DOI QR코드

DOI QR Code

Sensitive and Extraction-Free Detection of Methicillin-Resistant Staphylococcus aureus through Ag+ Aptamer-Based Color Reaction

  • Hongli Cao (Emergency Department, Beijing Rehabilitation Hospital, Capital Medical University) ;
  • Guosheng Zhang (Emergency Department, Beijing Rehabilitation Hospital, Capital Medical University) ;
  • Hui Ma (Emergency Department, Beijing Rehabilitation Hospital, Capital Medical University) ;
  • Zhongwen Xue (Emergency Department, Beijing Rehabilitation Hospital, Capital Medical University) ;
  • Ran Huo (Emergency Department, Beijing Rehabilitation Hospital, Capital Medical University) ;
  • Kun Wang (Emergency Department, Beijing Rehabilitation Hospital, Capital Medical University) ;
  • Zijin Liu (Orthopedic Rehabilitation Department, Beijing Rehabilitation Hospital, Capital Medical University)
  • Received : 2023.08.24
  • Accepted : 2023.09.14
  • Published : 2024.01.28

Abstract

Refractory infections, such as hospital-acquired pneumonia, can be better diagnosed with the assistance of precise methicillin-resistant Staphylococcus aureus (MRSA) testing. However, traditional methods necessitate high-tech tools, rigorous temperature cycling, and the extraction of genetic material from MRSA cells. Herein, we propose a sensitive, specific, and extraction-free strategy for MRSA detection by integrating allosteric probe-based target recognition and exonuclease-III (Exo-III)-enhanced color reaction. The penicillin-binding protein 2a (PBP2a) aptamer in the allosteric probe binds with MRSA to convert protein signals to nucleic acid signals. This is followed by the DNA polymerase-assisted target recycle and the production of numerous single-strand DNA (ssDNA) chains which bind with silver ion (Ag+) aptamer to form a blunt terminus that can be identified by Exo-III. As a result, the Ag+ aptamer pre-coupled to magnetic nanoparticles is digested. After magnetic separation, the Ag+ in liquid supernatant catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) for a color reaction. In addition, a concentration of 54 cfu/mL is predicted to be the lowest detectable value. Based on this, our assay has a wide linear detection range, covering 5 orders of magnitude and demonstrating a high specificity, which allows it to accurately distinguish the target MRSA from other microorganisms.

Keywords

Acknowledgement

This work was supported by the First Affiliated Hospital of Capital Medical University.

References

  1. Ceccato A, Mendez R, Ewig S, de la Torre MC, Cilloniz C, Gabarrus A, et al. 2021. Validation of a prediction score for drug-resistant microorganisms in community-acquired pneumonia. Ann. Am. Thorac. Soc. 18: 257-265.
  2. Diaz Santos E, Mora Jimenez C, Del Rio-Carbajo L, Vidal-Cortes P. 2022. Treatment of severe multi-drug resistant Pseudomonas aeruginosa infections. Med. Intensiva (Engl Ed) 46: 508-520.
  3. Vanaerschot M, Decuypere S, Berg M, Roy S, Dujardin JC. 2013. Drug-resistant microorganisms with a higher fitness--can medicines boost pathogens? Crit. Rev. Microbiol. 39: 384-394.
  4. Lanks CW, Musani AI, Hsia DW. 2019. Community-acquired pneumonia and hospital-acquired pneumonia. Med. Clin. North Am. 103: 487-501.
  5. Modi AR, Kovacs CS. 2020. Hospital-acquired and ventilator-associated pneumonia: Diagnosis, management, and prevention. Cleve. Clin. J. Med. 87: 633-639.
  6. Bassetti M, Labate L, Melchio M, Robba C, Battaglini D, Ball L, et al. 2022. Current pharmacotherapy for methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Expert Opin. Pharmacother. 23: 361-375. 
  7. Dangerfield B, Chung A, Webb B, Seville MT. 2014. Predictive value of methicillin-resistant Staphylococcus aureus (MRSA) nasal swab PCR assay for MRSA pneumonia. Antimicrob. Agents Chemother. 58: 859-864.
  8. Baltekin O, Boucharin A, Tano E, Andersson DI, Elf J. 2017. Antibiotic susceptibility testing in less than 30 min using direct single-cell imaging. Proc. Natl. Acad. Sci. USA 114: 9170-9175.
  9. Schoepp NG, Schlappi TS, Curtis MS, Butkovich SS, Miller S, Humphries RM, et al. 2017. Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples. Sci. Transl. Med. 9: eaal3693.
  10. Ota Y, Furuhashi K, Nanba T, Yamanaka K, Ishikawa J, Nagura O, et al. 2019. A rapid and simple detection method for phenotypic antimicrobial resistance in Escherichia coli by loop-mediated isothermal amplification. J. Med. Microbiol. 68: 169-177.
  11. Brakstad OG, Aasbakk K, Maeland JA. 1992. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 30: 1654-1660.
  12. Gao X, Yao X, Zhong Z, Jia L. 2018. Rapid and sensitive detection of Staphylococcus aureus assisted by polydopamine modified magnetic nanoparticles. Talanta 186: 147-153.
  13. Li Q, An Z, Sun T, Ji S, Wang W, Peng Y, et al. 2022. Sensitive colorimetric detection of antibiotic resistant Staphylococcus aureus on dairy farms using LAMP with pH-responsive polydiacetylene. Biosens. Bioelectron. 219: 114824.
  14. Wang Y, Wang Z, Zhan Z, Liu J, Deng T, Xu H. 2022. Fluorescence detection of Staphylococcus aureus using vancomycin functionalized magnetic beads combined with rolling circle amplification in fruit juice. Anal. Chim. Acta 1189: 339213.
  15. Wei L, Wang Z, Wang J, Wang X, Chen Y. 2022. Aptamer-based colorimetric detection of methicillin-resistant Staphylococcus aureus by using a CRISPR/Cas12a system and recombinase polymerase amplification. Anal. Chim. Acta 1230: 340357.
  16. Guk K, Keem JO, Hwang SG, Kim H, Kang T, Lim EK, et al. 2017. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosens. Bioelectron. 95: 67-71.
  17. Fan Y, Cui M, Liu Y, Jin M, Zhao H. 2020. Selection and characterization of DNA aptamers for constructing colorimetric biosensor for detection of PBP2a. Spectrochim. Acta A Mol. Biomol. Spectrosc. 228: 117735.
  18. Ocsoy I, Yusufbeyoglu S, Yilmaz V, McLamore ES, Ildiz N, Ulgen A. 2017. DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-Resistant Staphylococcus aureus. Colloids Surf. B Biointerfaces 159: 16-22.
  19. Neil JR, Verma A, Kronewitter SR, McGee WM, Mullen C, Viirtola M, et al. 2021. Rapid MRSA detection via tandem mass spectrometry of the intact 80 kDa PBP2a resistance protein. Sci. Rep. 11: 18309.
  20. Gondokesumo ME, Kurniawan IM. 2020. Molecular docking study of sappan wood extract to inhibit PBP2A enzyme on methicillin-resistant Staphylococcus aureus (MRSA). J. Basic Clin. Physiol. Pharmacol. 30. doi: 10.1515/jbcpp-2019-0282.
  21. Srisuknimit V, Qiao Y, Schaefer K, Kahne D, Walker S. 2017. Peptidoglycan Cross-linking preferences of Staphylococcus aureus penicillin-binding proteins have implications for treating MRSA infections. J. Am. Chem. Soc. 139: 9791-9794.