• Title/Summary/Keyword: DNA 손상

Search Result 548, Processing Time 0.037 seconds

Antioxidant Activity and Inhibitory Effect on Oxidative DNA Damage of Ethyl Acetate Fractions Extracted from Cone of Red Pine (Pinus densiflora) (솔방울 에틸아세테이트 분획물의 항산화 및 산화적 DNA 손상 억제 활성)

  • Jang, Tae Won;Nam, Su Hwan;Park, Jae Ho
    • Korean Journal of Plant Resources
    • /
    • v.29 no.2
    • /
    • pp.163-170
    • /
    • 2016
  • Antioxidant activity and inhibitory effect on oxidative DNA damage of ethyl acetate fractions extracted from Cone of Red Pine (Pinus densiflora) were investigated to find utilization of Cone, by-product of Red Pine, thrown out after berry shatter, as a new natural plant resource. Cone from P. densiflora was extracted with methanol (MeOH) and separated to petroleum ether, ethyl acetate and water fraction. Among them, ethyl acetate fraction was used. The antioxidant activity was conducted by the 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical, 2, 2'-Azino-bis (3-ethylbenzothiazoline-6 sulfonic acid) diammonium salt (ABTS) radical scavenging assay, Fe2+ chelating assay and reducing power assay. The inhibitory effect on oxidative DNA damage was determined by DNA cleavage assay using φX-174 RF I plasmid. The results of DPPH and ABTS radical scavenging activity at 200 ㎍/㎖ of extracts were 86.50% and 95.80% respectively, which were similar figures compared with L-ascorbic acid as control. Fe2+ chelating activity was 77.96% and reducing power was 0.77 at 200 ㎍/㎖. Total phenolic component was 27.29±0.3 ㎎/g and Vitamin C content was 1.84±0.1 ㎎/g. Also ethyl acetate fraction from Cone has inhibitory effect, using φX-174 RF I plasmid on DNA cleavage assay. In conclusion, Cone, by-product of P. densiflora, showed high antioxidant activity and inhibitory effect on oxidative DNA damage. Therefore this study suggests Cone, useless by-product, can be developed as a new natural plant resource with lots of utilization such as an effective antioxidant, natural medicine, food, cosmetics and so on.

Inhibitory effect of Korean mistletoes on the oxidative DNA damage (한국산 겨우살이의 산화적 DNA 손상 억제작용)

  • Lee, So-Jin;Lee, Mi-Kyoung;Choi, Geun-Pyo;Kim, Na-Young;Roh, Seong-Kyu;Heo, Moon-Young;Kim, Jong-Dai;Lee, Hyeon-Yong;Lee, Jin-Ha
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.2
    • /
    • pp.89-96
    • /
    • 2003
  • Korean mistletoes extracts were investigated for in vitro antioxidation activity, with 1,1-diphenyl-2-picrylhydrazine(DPPH), and an inhibitory effect on oxidative DNA damage by using comet assay. The Korean mistletoes were 4 different kinds classified by their host plants (Korean Viscum sp. in Quercus acutissima Carr., Korean Viscum sp. in Castanea crenata, Korean Viscum sp. in Betula platyphylla, and Korean Viscum sp. in Salix koreensis). The samples were extracted with ethanol, and fractonationed with n-butanol, ethyl acetate, chloroform, n-hexane, and second distilled water. Among them, ethyl acetate fraction from Korean Viscum sp. in Betula platyphylla showed the strongest activities to electron donating ability on 1,1-diphenyl-2-picrylhydrazyl(DPPH) and the protective effect on oxidative DNA damage.

Effects of carbendazim on DNA, gene and chromosome (살균제 carbendazim이 DNA, 유전자 및 염색체에 미치는 영향)

  • Lee, Je-Bong;Sung, Pil-Nam;Jeong, Mi-Hye;Shin, Jin-Sup;Kang, Kyu-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.4
    • /
    • pp.288-298
    • /
    • 2004
  • Benzimidazole pesticide carbendazim that is effective against a wide range of fungal plant pathogens is a protective, eradicant, and systemic fungicide. For genetic toxicity evaluation of carbendazim on DNA, genes and chromosome, were investigated with chromosome aberration, bacterial reverse mutation, micronucleus test in mouse born marrow and DNA damage assay by single cell microgel electrophoresis. Substitution and frameshift mutation were not induce at variable concentration of carbendazim on Ames test with or without rat liver microsomal activation. For the result of chromosome aberration test, numerical changes of chromosome were detected at the concentrations higher than $4.0{\mu}g/m{\ell}$, but structural aberration was not induced. Positive control, Mitomycin-C and captafol made a structural aberration, but numerical change of chromosome did not appear. In the micronucleus test for mouse born marrow, carbendazim was negative, but was weak positive in DNA damage assay by single cell microgel electrophoresis because of increased DNA moving length of 20% to control.

Antioxidant Activity and DNA Protective Effect against Oxidative Stress of Pinus rigida × taeda Cone (리기테다 소나무 솔방울의 항산화 활성 및 산화적 DNA 손상에 대한 억제 효과)

  • Choi, Jisoo;Jang, Taewon;Min, Youngsil;Lee, Manhyo;Park, Jaeho
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.11
    • /
    • pp.168-176
    • /
    • 2020
  • Reactive oxygen species (ROS) damage DNA and cause cancer. Therefore, the research is being conducted on the development of antioxidants for the removal of ROS. This study was performed to investigate antioxidant activity and protective effect against oxidative DNA damage using ethyl acetate fractions from the cone of Pinus rigida × taeda (ERT). The antioxidant activity was evaluated using the DPPH, ABTS radical scavenging assay, reducing power assay, and Fe2+ chelating assay. Also, the contents of phenolic compounds and vitamin C related to antioxidant activity were analyzed to confirm phytochemicals. The DNA protective effect against oxidative stress was confirmed by the φX-174 RF I plasmid DNA cleavage assay. As a result, ERT showed DPPH and ABTS radical scavenging activities in a concentration-dependent manner. The results of reducing power and Fe2+ chelating activities were 77.32 ± 2.28% and 64.09 ± 1.01% at 200 ㎍/㎖. Also, ERT showed a DNA protective effect against oxidative stress.

Inhibitory Effect of Red Bean (Phaseolus angularis) Hot Water Extracts on Oxidative DNA and Cell Damage (팥(Phaseolus angularis) 열수 추출물의 산화적 DNA와 세포 손상 억제 효과)

  • Park, Young-Mi;Jeong, Jin-Boo;Seo, Joo-Hee;Lim, Jae-Hwan;Jeong, Hyung-Jin;Seo, Eul-Won
    • Korean Journal of Plant Resources
    • /
    • v.24 no.2
    • /
    • pp.130-138
    • /
    • 2011
  • In this study, we evaluated the protective effects of the hot water extract from red bean (Phaseolus angularis) against oxidative DNA and cell damage induced by hydroxyl radical. The antioxidant activities were evaluated by hydroxyl radical and hydrogen peroxide scavenging assay, and $Fe^{2+}$-chelating assay. Although the extract with hot water didn't scavenge the hydroxyl radical, it removed and chelated hydrogen peroxide and ferrous iron necessary for the induction of hydroxyl radical by 71% and 64% at 200 ${\mu}g/ml$, respectively. Its protective effect on oxidative DNA damage was carried using ${\Psi}$X-174 RF I plasmid DNA comparing the conversion level of supercoiled form of the plasmid DNA into open-circular form and linear form and the expression level of phospho-H2AX in NIH 3T3 cells. In ${\Psi}$X-174 RF I plasmid DNA cleavage assay, it inhibited oxidative DNA damage by 96% at 200 ${\mu}g/ml$. Also, it decreased the expression of phospho-H2AX by 50.1% at 200 ${\mu}g/ml$. Its protective effect against oxidative cell damage was measured by MTT assay and the expression level of p21 protein in NIH 3T3 cells. In MTT assay for the protective effect against the oxidative cell damage, it inhibited the oxidative cell death and the abnormal cell growth induced by hydroxyl radical. Also, it inhibited p21 protein expression by 98% at 200 ${\mu}g/ml$. In conclusion, the results of the present studies indicate that hot water extract from red bean exhibits antioxidant properties and inhibit oxidative DNA damage and the cell death caused by hydroxyl radical.

Protective Effects of Vitamin C against Genomic DNA Damage Caused by Genotoxicants (유전독성물질의 유전체 손상 작용에 대한 Vitamin C의 방호효과)

  • Yu, Gyeong Jin;Lee, Chun Bok
    • Journal of Life Science
    • /
    • v.23 no.8
    • /
    • pp.963-969
    • /
    • 2013
  • Although it is popularly believed that vitamin C protects cells from various genotoxicants, the degrees and mechanisms of itsprotective actions are not fully understood. In this study, vitamin C's protective effects against various genotoxicants were quantified, together with subsequent analyses on the mechanisms of these protective effects. Comet assay was employed to measure the degree of DNA damage in Chinese hamster ovary cells (CHO-K1) exposed to five genotoxicants, $H_2O_2$, $HgCl_2$, N-methyl-N-nitro-N-nitrosoguanidine (MNNG), 4-nitroquinoline-1-oxide (4NQO), and UV-irradiation. In cases cells were treated with $H_2O_2$, $HgCl_2$, and 4NQO together with vitamin C, the damage to DNA decreased to the level of the control group. In cases of UV-irradiation, the protective effect of vitamin C appeared, but did not reach the control levels. Interestingly, vitamin C did not have protective effects against the genotoxicity of MNNG. The degrees of DNA damage of cells treated with vitamin C prior to exposure togenotoxicants were 28~49% lower than those of cells treated with vitamin C after being exposed to genotoxicants. In conclusion, vitamin C had strong antioxidanteffects against genotoxicants by being a primary antioxidant blocking genotoxicity reaching the cells, rather than being a secondary antioxidant acting on post-exposure DNA repair processes. However, vitamin C's protective effects appearto be limited, as there are genotoxicants, such as MNNG, whosegenotoxicityis not affected by vitamin C. Therefore, the results of this study warrant furtherstudies on toxic mechanisms of genotoxicants and their interactions with protective mechanisms of vitamin C.

Effect of Antioxidant Activity and Induction of DNA Damage on Human Gastric Cancer Cell by Rubus coreanus Miquel (복분자 추출물의 항산화활성 및 인간 위암 세포주에 대한 유전적 손상 유도)

  • Jeon, Sang-Kyung;Lee, Ji-Won;Lee, In-Seon
    • Journal of Life Science
    • /
    • v.17 no.12
    • /
    • pp.1723-1728
    • /
    • 2007
  • Rubus coreanus Miquel (RCM), a type of red raspberry, grows wild in Korea and China and its unripe fruit is used as a folk medicine for the treatment of impotence and as a diuretic. RCM was extracted with methanol and then further fractionated it into for different types. In this study, we investigated the antioxidant activity of a RCM extract (ext.) and its fraction (fr.). DPPH free radical scavenging activity assay, total polyphenols contents, total flavonoids contents assay were used to analyze antioxidant activity. The DPPH free radical scavenging activity $(RC_{50}:1.67{\mu}g/ml)$ and total polyphenols contents $(546.25{\mu}g/mg)$ were higher in butanol fraction than in other fr. And total flavonoids contents was higher in ethylacetate fr. $(141.78{\mu}g/mg)$. We applied comet assay to measure the DNA damage in the individual cells and exposed time course at $IC_{50}$. Comet assay is a rapid and sensitive fluorescent microscopic method to examine DNA damage and repair at individual cell level. The butanol fro from RCM significantly induced 54.12%, 57.95% of DNA damage after treated RCM for 8 hr. In conclus

The Effect of Alpha-tocopherol Supplementation on the Improvement of Antioxidant Status and Lymphocyte DNA Damage in Postmenopausal Women (비타민 E 보충섭취가 폐경기 여성의 혈장 항산화 영양상태 및 DNA 손상 개선에 미치는 영향)

  • Kim, Chang-Suk;Kang, Hae-Jin;Lee, Soon-Hee;Park, Yoo-Kyoung;Kang, Myung-Hee
    • Journal of Nutrition and Health
    • /
    • v.40 no.8
    • /
    • pp.708-718
    • /
    • 2007
  • The purpose of this project was to evaluate whether vitamin E supplementation could improve the antioxidant status and lymphocyte DNA damage in Korean postmenopausal women. This was double blinded, placebo-controlled trial. Thirty-five subject were randomized to receive either placebo 400 mg/capsule or natural $\alpha$-tocopherol 400 IU/capsule, 2 times a day for 6 weeks. We measured plasma vitamin C, $\alpha$-tocopherol, $\gamma$-tocopherol, $\alpha$-carotenoid, $\beta$-carotenoid, lycopene concentration and tail length, %DNA in tail, tail moment in lymphocyte DNA damage index. Vitamin E supplementation group had significantly increased plasma vitamin C(p<0.05), $\alpha$-tocopherol(p<0.000), whereas $\gamma$-tocopherol(p<0.000) and tail length(p<0.05) were significantly decreased. However, placebo supplementation group also had significantly increased plasma vitamin C(p<0.05). In conclusion, our study shows that vitamin E supplementation to Korean postmenopausal women may partially improve antioxidant status and lymphocyte DNA damage.

Evaluation of DNA Damage and Repair Kinetics in the Earthworm (Eisenia fetida) Exposed to Radiation and Mercury (방사선과 수은에 의해 유도된 Eisenia fetida 체강세포의 DNA 손상 및 수복 평가)

  • Ryu, Tae-Ho;Nili, Mohammad;An, Kwang-Guk;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.1
    • /
    • pp.68-73
    • /
    • 2011
  • The single cell gel electrophoresis (SCGE) assay is a microelectrophoretic technique for assessments of DNA damage at the level of the individual eukaryotic cell. The SCGE assay, due to its simplicity, sensitivity and need of a few cells, has advantages compared to other genomic damage assays such as sister chromatid exchange, chromosomal aberration and micronucleus test. In this study, investigated were the levels of DNA damage and the repair kinetics in the coelomocytes of Eisenia fetida treated with HgCl2 and ionizing radiation by means of the SCGE assay. For detecting DNA damage and repair in coelomocytes, earthworms (E. fetida) were irradiated with six doses of ${\gamma}$-rays (0, 2.5, 5, 10, 20 and 50 Gy) and in vivo exposed to mercuric chloride at 0, 80 and 160 mg $kg^{-1}$ for 48 hours. Then the Olive tail moments were measured during 0~12 hours after irradiation and 0~72 hours after Hg treatment. The results showed that the more the oxidative stress was induced by mercury and radiation, the longer the repair time was required. Also, the results suggest that the SCGE assay may be used as an important tool for comparison of the sensitivity of different species to oxidative stresses.