• Title/Summary/Keyword: DMS 모델

Search Result 34, Processing Time 0.02 seconds

A Study on Speech Recognition using DMS Model (DMS 모델을 이용한 음성인식에 관한 연구)

  • An, Tae-Ock;Byun, Yong-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.2E
    • /
    • pp.41-50
    • /
    • 1994
  • This paper proposes a DMS(Dynamic Multi-Section) model based on the information of the similar features in word pattern. This model represents each word as a time series of several sections and each section implies duration time information and typical feature vectors. The procedure to make a model in the word pattern is that typical feature vector and duration time information are reflected in the distance, when matching between word pattern and model is repeated. As the result of it, the accumulated distance by matching is to be minimized.

  • PDF

A Study on the Automatic Speech Control System Using DMS model on Real-Time Windows Environment (실시간 윈도우 환경에서 DMS모델을 이용한 자동 음성 제어 시스템에 관한 연구)

  • 이정기;남동선;양진우;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.51-56
    • /
    • 2000
  • Is this paper, we studied on the automatic speech control system in real-time windows environment using voice recognition. The applied reference pattern is the variable DMS model which is proposed to fasten execution speed and the one-stage DP algorithm using this model is used for recognition algorithm. The recognition vocabulary set is composed of control command words which are frequently used in windows environment. In this paper, an automatic speech period detection algorithm which is for on-line voice processing in windows environment is implemented. The variable DMS model which applies variable number of section in consideration of duration of the input signal is proposed. Sometimes, unnecessary recognition target word are generated. therefore model is reconstructed in on-line to handle this efficiently. The Perceptual Linear Predictive analysis method which generate feature vector from extracted feature of voice is applied. According to the experiment result, but recognition speech is fastened in the proposed model because of small loud of calculation. The multi-speaker-independent recognition rate and the multi-speaker-dependent recognition rate is 99.08% and 99.39% respectively. In the noisy environment the recognition rate is 96.25%.

  • PDF

HMM-based Speech Recognition using DMS Model and Double Spectral Feature (DMS 모델과 이중 스펙트럼 특징을 이용한 HMM에 의한 음성 인식)

  • Ann Tae-Ock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.649-655
    • /
    • 2006
  • This paper proposes a HMM-based recognition method using DMSVQ(Dynamic Multi-Section Vector Quantization) codebook by DMS model and double spectral feature, as a method on the speech recognition of speaker-independent. LPC cepstrum parameter is used as a instantaneous spectral feature and LPC cepstrum's regression coefficient is used as a dynamic spectral feature These two spectral features are quantized as each VQ codebook. HMM using DMS model is modeled by receiving instantaneous spectral feature and dynamic spectral feature by input. Other experiments to compare with the results of recognition experiments using proposed method are implemented by the various conventional recognition methods under the equivalent environment of data and conditions. Through the experiment results, it is proved that the proposed method in this paper is superior to the conventional recognition methods.

  • PDF

A Study on Connected Word Recognition for the Implementation of a Real-Time Voice Dialing System (실시간 음성 다이얼링 시스템 구현을 위한 연결어 인식에 관한 연구)

  • 김천영;양진우;유형근;이형준;홍진우;이강성;안태옥
    • The Journal of the Acoustical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.13-25
    • /
    • 1993
  • 본 논문은 음성 다이얼링 시스템을 구현하기 위한 연결어 인식에 관한 연구이다. 적용된 인식 알고리즘은 기준패턴을 생성할 때 DMS 모델을 이용한 One-stage DMS/DP 알고리즘이고, 인식 대상어는 광운대학교 부서명 150 단어이다. 연결어 인식을 실시간으로 처리하기 위한 방법으로써 본 논문에서는 음절과 단어 단위의 DMS 템플리트를 구성하여 실험하였고 이 실험결과로부터 실시간과 인식률을 고려한 최적의 인식은 단어단위 템플리트에서 20 구간의 DMS 템플리트를 구성하여 실험하였고 이 실험결과로부터 실시간과 인식률을 고려한 최적의 인식은 단어단위 템플리트에서 20구간의 DMS 모델을 적용하였을 때 수행되었고, 이때 다중화자종속과 화자독립의 인식률은 각각 97.2%, 86.8%이다. 실험된 결과를 이용하여 음성 다이얼링 모델 시스템을 DSP 전용칩인 TMS320C30 프로세서를 내장한 DSP 보오드, 486 PC와 DIAL 모뎀을 이용해서 구현하였고, 전체 다이얼링 시간은 약 7~14초가 소요되었다.

  • PDF

Continuous Speech Recognition using Syntactic Analysis and One-Stage DMS/DP (구문 분석과 One-Stage DMS/DP를 이용한 연속음 인식)

  • 안태옥
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.201-207
    • /
    • 2004
  • This paper is a study on the recognition of continuous speech and uses a method of speech recognition using syntactic analysis and one-stage DMS/DP. In order to perform the speech recognition, first of all, we make DMS model by section division algorithm and let continuous speech data be recognized through One-stage DMS/DP method using syntactic analysis. Besides the speech recognition experiments of proposed method, we experiment the conventional one-stage DP method under the equivalent environment of data and conditions. From the recognition experiments, it is shown that Ole-stage DMS/DP using syntactic analysis is superior to conventional method.

A Study on the Automatic Speech Control System Using DMS model on Real-Time Windows Environment (실시간 윈도우 환경에서 DMS 모델을 이용한 자동 음성 제어 시스템에 관한 연구)

  • 남동선
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.361-364
    • /
    • 1998
  • 본 논문은 인식 속도의 개선을 위해 단어의 지속시간에 따라 Section의 수를 변경한 가변섹션 수 DMS모델을 사용한 실시간 인식 시스템을 연구하고 인식된 결과를 실제 수행하도록 하는 시스템을 구현하는 것이 목적이다. 이러한 윈도우 음성 제어 시스템 구현을 위해 음성의 자동 검출, 윈도우 제어 모듈 구현, 동적 모델 재구성을 이용하여 적용된 단어 단위인식 시스템의 단점을 장점으로 수용하는 시스템을 구현하였고 본 시스템의 이름은 “VocManagerII”라 명명하였다. 구현된 시스템의 성능 평가 결과 인식 및 제어 수행 속도는 1초이내에 이루어지며 인식율은 66개의 기본 명령어에 대하여 화자 종속 99.36%, 화자 독립 99.08%의 좋은 인식율을 보여 주었다.

  • PDF

A Study on Isolated Word Recognition for Implementation of Real-Time Voice Dialing System (실시간 음성 다이얼링 시스템 구현을 위한 단독어 인식에 관한 연구)

  • 이항섭;홍진우;이강성;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.1E
    • /
    • pp.5-14
    • /
    • 1992
  • 본 논문은 실시간 음성 다이얼링 시스템 구현을 위한 화자종속의 단독어 인식에 대하여 기술하 였다. 인식을 위한 모델 작성은 적은 메로리에 계산 시간이 적게 걸리는 DMS 모델을 사용하였다. 인식 대상어는 대학교내의 50개 부서명을 선택하여고, 발성후 3초내에 인식결과를얻을 수 있었다. 시스템은 구간 수 22에서 가중치 0.6의 DMS 모델을 표준패턴으로 사용하였을 때 98%의 성능을 나타냈다.

  • PDF

Korean Speech Recognition using Dynamic Multisection Model (DMS 모델을 이용한 한국어 음성 인식)

  • 안태옥;변용규;김순협
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.12
    • /
    • pp.1933-1939
    • /
    • 1990
  • In this paper, we proposed an algorithm which used backtracking method to get time information, and it be modelled DMS (Dynamic Multisection) by feature vectors and time information whic are represented to similiar feature in word patterns spoken during continuous time domain, for Korean Speech recognition by independent speaker using DMS. Each state of model is represented time sequence, and have time information and feature vector. Typical feature vector is determined as the feature vector of each state to minimize the distance between word patterns. DDD Area names are selected as recognition wcabulary and 12th LPC cepstrum coefficients are used as the feature parameter. State of model is made 8 multisection and is used 0.2 as weight for time information. Through the experiment result, recognition rate by DMS model is 94.8%, and it is shown that this is better than recognition rate (89.3%) by MSVQ(Multisection Vector Quantization) method.

  • PDF

HMM-based Speech Recognition using DMS Model and Fuzzy Concept (DMS 모델과 퍼지 개념을 이용한 HMM에 기초를 둔 음성 인식)

  • Ann, Tae-Ock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.964-969
    • /
    • 2008
  • This paper proposes a HMM-based recognition method using DMSVQ(Dynamic Multi-Section Vector Quantization) codebook by DMS(Dynamic Multi-Section) model and fuzzy concept, as a study for speaker- independent speech recognition. In this proposed recognition method, training data are divided into several dynamic section and multi-observation sequences which are given proper probabilities by fuzzy rule according to order of short distance from DMSVQ codebook per each section are obtained. Thereafter, the HMM using this multi-observation sequences is generated, and in case of recognition, a word that has the most highest probability is selected as a recognized word. Other experiments to compare with the results of recognition experiments using proposed method are implemented as a data by the various conventional recognition methods under the equivalent environment. Through the experiment results, it is proved that the proposed method in this study is superior to the conventional recognition methods.

A Study on Speech Recognition in a Running Automobile (주행중인 자동차 환경에서의 음성인식 연구)

  • 양진우;김순협
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.3-8
    • /
    • 2000
  • In this paper, we studied design and implementation of a robust speech recognition system in noisy car environment. The reference pattern used in the system is DMS(Dynamic Multi-Section). Two separate acoustic models, which are selected automatically depending on the noisy car environment for the speech in a car moving at below 80km/h and over 80km/h are proposed. PLP(Perceptual Linear Predictive) of order 13 is used for the feature vector and OSDP (One-Stage Dynamic Programming) is used for decoding. The system also has the function of editing the phone-book for voice dialing. The system yields a recognition rate of 89.75% for male speakers in SI (speaker independent) mode in a car running on a cemented express way at over 80km/h with a vocabulary of 33 words. The system also yields a recognition rate of 92.29% for male speakers in SI mode in a car running on a paved express way at over 80km/h.

  • PDF