• Title/Summary/Keyword: DIATOMS

Search Result 510, Processing Time 0.026 seconds

Monthly HPLC Measurements of Pigments from an Intertidal Sediment of Geunso Bay Highlighting Variations of Biomass, Community Composition and Photo-physiology of Microphytobenthos (HPLC를 이용한 근소만 조간대 퇴적물내의 저서미세조류 현존량, 군집 및 광생리의 월 변화 분석)

  • KIM, EUN YOUNG;AN, SUNG MIN;CHOI, DONG HAN;LEE, HOWON;NOH, JAE HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • In this study, the surveys were carried out from October (2016) to October (2017) along the tidal flat of Geunso Bay, Taean Peninsula of the western edge of Korea. The sampling trips were carried out for a total of 16 times, once or twice a month. In order to investigate the monthly variation of the microphytobenthos (MPB) biomass, community composition and photo-physiology were analyzed by HPLC (High performance liquid chromatography). The total chlorophyll a (TChl a) concentrations used as an indicator of biomass of MPB in the upper 1 cm sediment layer ranged from 40.4 to $218.9mg\;m^{-2}$ throughout the sampling period. TChl a concentrations showed the maximum level on $24^{th}$ of February and remained high throughout March after which it started to declined. The biomass of MPB showed high values in winter and low values in summer. The monthly variations of Phaeophorbide a concentrations suggested that the low grazing intensity of the predator in the winter may have partly attributed to the MPB winter blooming. As a result of monthly variations of the MPB community composition using the major marker pigments, the concentrations of fucoxanthin, the marker pigment of benthic diatoms, were the highest throughout the year. The concentrations of most of the marker pigments except for chlorophyll b (chlorophytes) and peridinin (dinoflagellates) increased in winter. However, the concentrations of fucoxanthin increased the highest, and the relative ratios of the major marker pigments to TChl a except fucoxanthin decreased during the same period. The vertical distribution of Chl a and oxygen concentrations in the sediments using a fluorometer and an oxygen micro-optode Chl a concentrations decreased with oxygen concentrations with increasing depth of the sediment layers. Moreover, this tendency became more apparent in winter. The Chl a was uniformly vertical down to 12 mm from May to July, but the oxygen concentration distribution in May decreased sharply below 1 mm. The increase in phaeophorbide a concentration observed at this time is likely to be caused by increased oxygen consumption of zoobenthic grazing activities. This could be presumed that MPB cells are transported downward by bioturbation of zoobenthos. The relative ratios (DT/(DD+DT)) obtained with diadinoxanthin (DD) and diatoxanthin (DT), which are often used as indicators of photo-adaptation of MPB, decreased from October to March and increased in May. This indicated that there were monthly differences in activity of Xanthophyll cycle as well.

Water quality characteristics and spatial distribution of phytoplankton during dry and rainy seasons in Bunam Lake and Cheonsu Bay, Korea (부남호·천수만의 갈수기와 강우기 수질 오염 특성과 식물플랑크톤의 공간 분포 특성)

  • Lee, Minji;Seo, Jin Young;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.184-194
    • /
    • 2021
  • Since the construction of a dike in 1983, the water quality in the Bunam Lake has continued to deteriorate due to algal bloom caused by agricultural nutrient loading. Therefore, we evaluated the change in water quality and phytoplankton ecological characteristics in Bunam Lake and Cheonsu Bay, Korea. Water temperature, salinity, dissolved oxygen, chemical oxygen demand (COD), chlorophyll, and phytoplankton community were surveyed in April during the dry season and in July during the rainy reason. As a result, during the dry period, phytoplankton proliferated greatly and stagnated in the Bunam Lake while a very high population of cyanobacteria Oscillatoria spp. (8.61×107 cells L-1) was recorded. Most of the nutrients, except, nitrate and nitrite, were consumed due to the large growth of phytoplankton. However, during the rainy period, concentrations of ammonia, phosphate, silicate, nitrate, and nitrite, were very high towards the upper station due to the inflow of fresh water. Cyanobacteria Oscillatoria and Microcystis spp. were dominant in the Bunam Lake during the rainy period. Even in the Cheonsu Bay, cyanobacteria dominated due to the effect of discharge and diatoms, such as, Chaetoceros spp. and Eucampia zodiacus, which also proliferated significantly due to increased levels of nutrients. Since the eutrophication index was above 1 in Bunam Lake, it was classified as eutrophic water and the Cheonsu Bay was classified as eutrophic water only during the rainy season. In addition, a stagnant seawater-derived hypoxia water mass was observed at a depth of8m in the Bunam Lake adjacent to the tide embankment and the COD concentration reached 206 mg L-1 in the bottom layer at B3. Based on this result, it is considered that the water quality will continue to deteriorate if organic matters settle due to continuous inflow of nutrients and growth of organisms while the bottom water mass is stagnant.

Characteristics on spatial distributions of phytoplankton communities in relation to water masses in the western South Sea, Korea in early autumn 2021 (2021년 이른 가을 남해 서부 해역의 수괴 분포 및 식물플랑크톤 군집의 공간분포 특성)

  • Yang Ho Yoon
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.559-572
    • /
    • 2021
  • A survey was conducted to analyze water masses and spatial distributions of phytoplankton communities at 15 stations on the surface and chlorophyll a maximum layers (CML) in the western South Sea of Korea from September 8 to 9, 2021. As a result, water masses were classified into Coastal Waters (CW) with relatively low salinity, the Tsushima Warm Current (TWC) with high water temperature and high salinity, and mixed waters (MW) showing a mixture of these two water masses. Turbidity showed high concentration in both the surface and CML. The chlorophyll a concentration was as low as 0.90±0.43 ㎍ L-1 in the surface, more than 1.1 ㎍ L-1 in CW, around 1.0 ㎍ L-1 in MW, and less than 0.5 ㎍ L-1 in the TWC. CML was 1.64±0.54 ㎍ L-1. Regarding species composition of phytoplankton communities, there were 57 species in 31 genera(diatoms, 57.8%; dinoflagellates, 35.1%; and other phytoflagellates, 7.1%). The phytoplankton standing crop had 4.6±7.6 cells mL-1 in the surface, more than 30 cells mL-1 in the CW, 2-5 cells mL-1 in the MW, and less than 2 cells mL-1 in the TWC. CML was slightly higher than the surface with a variation of 5.7±8.4 cells mL-1. Dominant species were found to be Rhizosolenia flagilissima f. flagilissima, Skeletonema costatum-ls, and Nitzschia sp./ small size in the surface. For the CML Rh. flagilisima f. flagilissima showed a dominance of 12.0%. For the surface, the diversity variation was 2.36±0.40, which was high for TWC but low for MW. For CML, the diversity variation was 2.29±0.52, which was slightly lower than that of the surface. The dominance in the surface was 0.50±0.15, with a fluctuation range of more than 0.5 in MW and less than 0.5 in the TWC, which was different from the diversity. According to correlation analysis and principal component analysis (PCA), the presence of phytoplankton standing crops was high in CW but low in MW and TWC. That is, phytoplankton communities in early autumn were strongly affected by the expansion and mixing of water masses in western South Sea.

Considerations on ground preparation for the Gimhae Bonghwang-dong Ruins (김해 봉황동 유적 대지조성에 대한 소고(小考))

  • YUN Sunkyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.4
    • /
    • pp.24-36
    • /
    • 2022
  • The Bonghwang-dong ruins in Gimhae, the central area of Geumgwan Gaya, is presumed to be the site of the royal palace, and excavations have been in progress at the Gaya National Cultural Heritage Research Institute. According to a research conducted by lowering the level to the base layer on the north side of the site, mostly shell layers composed of oysters were confirmed, and soil composed of different material was alternately filled in to form a site construction. In other words, it can be seen that there was work at the site of the Bonghwang-dong ruins that required large-scale labor, such as building ramparts and embankments. There is stratigraphic confusion such as showing different age values in the same shell layer through a chronological analysis of organic matter and charcoal in the sedimentary layer, and deriving a result value in the upper layer ahead of the lower layer. In addition, open-sea diatoms are observed not only in the sedimentary layers, but also the pits. Therefore, it is judged that the soil constituting the ruins was brought from the outside. The Bonghwang-dong ruins are located inside the commonly called Bonghwang earthen ramparts, where many excavation organizations conducted research within the estimated range of the earthen fortifications. As a result, it was found that it was similar to the sedimentary layers of the ruins of the Three Kingdoms Period, which were investigated along with the ruins of Bonghwang-dong. Through this, the surrounding ruins, including those of Bonghwang-dong, were located close to paleo-Gimhae Bay, so it is believed that the soil brought from the surroundings was used to reinforce the ground. As a result of the excavation research on the Bonghwang-dong ruins conducted so far, it was found by sedimentary layer analysis and soil experiments that the ruins were created on stable land. Relics excavated in the sediments of the ruins and carbon dating data show that Bonghwang-dong carried out large-scale civil construction work in the 4th century to build the site, which clearly shows the status of Geumgwan Gaya.

Comparative Analysis of Diversity Characteristics (γ-, α-, and β-diversity) of Biological Communities in the Korean Peninsula Estuaries (하구 순환 유지 여부에 따른 하구 주요 생물 군집별 다양성 특성 연구: 열린하구와 닫힌하구에서의 γ-, α- 및 β-다양성 비교)

  • Oh, Hye-Ji;Jang, Min-Ho;Kim, Jeong-Hui;Kim, Yong-Jae;Lim, Sung-Ho;Won, Doo-Hee;Moon, Jeong-Suk;Kwon, Soonhyun;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.1
    • /
    • pp.84-98
    • /
    • 2022
  • Estuary is important in terms of biodiversity because it has the characteristics of transition waters, created by the mixing of fresh- and seawater. The estuarine water circulation provides a variety of habitats with different environments by inducing gradients in the chemical and physical environment, such as water quality and river bed structure, which are ultimately the main factors influencing biological community composition. If the water circulation is interrupted, the loss of brackish areas and the interception of migration of biological communities will lead to changes in the spatial distribution of biodiversity. In this study, among the sites covered by the Estuary Aquatic Ecosystem Health Assessment, we selected study sites where changes in biodiversity can be assessed by spatial gradient from the upper reaches of the river to the lower estuarine area. The α-, γ- and β-diversity of diatom, benthic macroinvertebrates, and fish communities were calculated, and they were divided into open and closed estuary data and compared to determine the trends in biodiversity variation due to estuarine circulation. As results, all communities showed higher γ-diversity at open estuary sites. The benthic macroinvertebrate community showed a clear difference between open and closed estuaries in β-diversity, consequently the estuarine transects were considered as a factor that decreases spatial heterogeneity of their diversity among sites. The biodiversity trends analyzed in this study will be used to identify estuaries with low γ- and β-diversity by community, providing a useful resource for further mornitoring and management to maintain estuarine health.

Viability Test and Bulk Harvest of Marine Phytoplankton Communities to Verify the Efficacy of a Ship's Ballast Water Management System Based on USCG Phase II (USCG Phase II 선박평형수 성능 평가를 위한 해양 식물플랑크톤군집 대량 확보 및 생물사멸시험)

  • Hyun, Bonggil;Baek, Seung Ho;Lee, Woo Jin;Shin, Kyoungsoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.5
    • /
    • pp.483-489
    • /
    • 2016
  • The type approval test for USCG Phase II must be satisfied such that living natural biota occupy more than 75 % of whole biota in a test tank. Thus, we harvested a community of natural organisms using a net at Masan Bay (eutrophic) and Jangmok Bay (mesotrophic) during winter season to meet this guideline. Furthermore, cell viability was measured to determine the mortality rate. Based on the organism concentration volume (1 ton) at Masan and Jangmok Bay, abundance of ${\geq}10$ and $<50{\mu}m$ sized organisms was observed to be $4.7{\times}10^4cells\;mL^{-1}$and $0.8{\times}10^4cells\;mL^{-1}$, and their survival rates were 90.4 % and 88.0 %, respectively. In particular, chain-forming small diatoms such as Skeletonema costatum-like species were abundant at Jangmok Bay, while small flagellate ($<10{\mu}m$) and non chain-forming large dinoflagellates, such as Akashiwo sanguinea and Heterocapsa triquetra, were abundant at Masan Bay. Due to the size-difference of the dominant species, concentration efficiency was higher at Jangmok Bay than at Masan Bay. The mortality rate in samples treated by Ballast Water Treatment System (BWMS) (Day 0) was a little lower for samples from Jangmok Bay than from Masan Bay, with values of 90.4% and 93%, respectively. After 5 days, the mortality rates in control and treatment group were found to be 6.7% and >99%, respectively. Consequently, the phytoplankton concentration method alone did not easily satisfy the type approval standards of USCG Phase II ($>1.0{\times}10^3cells\;mL^{-1}$ in 500-ton tank) during winter season, and alternative options such as mass culture and/or harvesting system using natural phytoplankton communities may be helpful in meeting USCG Phase II biological criteria.

Change of Blooming Pattern and Population Dynamics of Phytoplankton in Masan Bay, Korea (마산만 식물플랑크톤의 대발생 양상의 변화와 군집 동태)

  • Lee, Ju-Yun;Han, Myung-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.147-158
    • /
    • 2007
  • To clarify the bloom pattern and species succession in phytoplankton community, the population dynamics with the determination of physico-chemical factors have been studies in Masan Bay, the south sea of Korea, for the periods November 2003-October 2004. Concentration of $NH_4-N$ was always higher than that of $NO_3-N$, which was similar level as compared to other costal areas. $PO_4-P$ concentration was lower than those in other coastal areas but similar to oligotrophic environments. Thus, phosphate seems the limiting nutrient rather than nitrogen. $SiO_2-Si$ concentration was also low as compared to other costal areas. Si:P ratio was low from autumn to winter, suggesting silicate and/or phosphate limitation during this period. The cell density of phytoplankton was high in winter 2003 and early autumn 2004. The carbon biomass was high in winter 2003 and summer 2004. And chlorophyll-a concentration was high in late autumn 2003 and summer 2004. Among 78 species of phytoplankton found in the bay during the investigated period, dominant species were two diatoms of Cylindrotheca closterium, Skeletonema costatum, and three dinoflagellates of Heterocapsa triquetra, Prorocentrum minimum, P. triestinum, and one raphidophyte of Heterosigma akashiwo. P. minimum dominated from late autumn to winter, but it was replaced by H. triquetra in late winter. P. triestinum dominated from late spring to early summer. Simultaneously, H. akashiwo cell density steadily increased, and it became dominant with C. closterium in late summer. With decreasing of H. akashiwo and C. closterium, S. costatum became the most dominant species in autumn. The canonical analyses showed that total phytoplankton cell density related to diatom cell density and it was affected by temperature, and concentrations of $NO_3-N\;and\;PO_4-P$. The carbon bio-mass and $chlorophyll-{\alpha}$ concentration related to diatom- and dinoflagellate cell densities and these were affected by flagellate cell density, salinity, and concentrations of $SiO_2-Si\;and\;PO_4-P$. Last six years monitoring data in Masan city obtained from Korean Meteorological Agency indicates gradual increase in air temperature. And the precipitation decreased especially in spring season. The winter bloom found in 2003 may be caused by the increase in the temperature and this bloom subsequently induced the nutrients depletion, which continued until next spring probably due to no precipitation. Therefore, the spring bloom, which had been usually observed in the bay, might disappear in 2004.

The Characteristics on the Spatial and Temporal Distribution of Phytoplankton in the Western Jinhae Bay, Korea (진해만 서부해역에서 식물플랑크톤의 시.공간적 분포특성)

  • Yoo, Man-Ho;Song, Tae-Yoon;Kim, Eeu-Soo;Choi, Joong-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.305-314
    • /
    • 2007
  • We studied spatial and temporal distributions of the phytoplankton and their relationships to physico-chemical environmental factors in the western Jinhae Bay, Korea from November 2003 to August 2004. In most cases, physico-chemical environmental factors showed homogeneous distribution. The phytoplankton communities were composed of mainly diatoms and dinoflagellates, and their standing crops ranged from $16{\times}10^3\;cells\;l^{-1}\;to\;5,845{\times}10^3\;cells\;l^{-1}$ (with a mean value of $555{\times}10^3\;cells\;l^{-1}$). The bloom of phytoplankton was observed in Gohyun Port in the summer. Seasonal variation of phytoplankton standing crops was higher in winter and summer than in spring and autumn. The dominant species were Skeletonema costatum, Akashiwo sanguinea, Pseudo-nitzschia pungens, Dactyliosolen sp., Leptocylindrus danicus, cryptomonads and etc. Especially, S. costatum was predominant in the summer and A. sanguinea (spring and autumn), Pseudo-nitzschia sp. (summer), Guinardia striata (spring), unidentified flagellates (summer) and cryptomonads (spring) appeared to be an opportunistic species. Concentrations of Chl a ranged from $0.6{\mu}g{\cdot}l^{-1}\;to\;16.7{\mu}g{\cdot}l^{-1}$ (with a mean value of $3.4{\mu}g{\cdot}l^{-1}$). The results of the canonical correspondence analysis implies the study area was grouped into the 2 water masses (inner and outer waters of Gohyun Port) and inner waters had higher abundance and Chl a concentration than outer waters. Also, phytoplankton sanding crops were related with temperature, DO and nutrients ($SiO^2$, TN, TP and etc.) in inner waters. Inner water-mass of Gohyun Port expanded between Gacho Is. and Chilchon Is. during the winter.

Malacological Studies on Parafossarulus manchouricus(Gastropoda: Prosobranchia) in Korea (한국산(韓國産) 왜우렁(Parafossarulus manchouricus)의 패류학적(貝類學的) 연구(硏究))

  • Chung, Pyung-Rim
    • The Korean Journal of Malacology
    • /
    • v.1 no.1
    • /
    • pp.24-50
    • /
    • 1985
  • Five different populations of Parafossarulus manchouricus (Chongpyung, Chinju and Kunsan, Korea; and Japan and Taiwan), a population of Bitbynia (Gabbia) misella (Gongju, Korea) and two different populations of Bithynta tentaculata (Michigan, U.S.A. and Bodensee, Germany) were compared in regard to eff-laying characteristics, morphology, chromosome cytology, natural infections of parasites and ecology of habitats. A satisfactory culture method was devised for laboratory rearing of the snails. Tropical fish food (Terra SML) and powdered green leaves (Ceralife) were used as the main food sources for the snails. Benthic diatoms such as Navicula and Gomphonema from the periphyton were also essential for satisfactory growth, especially for the baby snails. The aquaria were stabilized with small stones from a local stream. Young P. manchouricus snails grew to adult size in about 54 days after hatching. They laid eggs 150-156 days after hatching. The whole cycle (birth to egg-laying) took approximately 5 months. The three species of bithyniid snails are iteroparous and lay eggs once a year. There were no major morphological differences in the shells of genera or subgenera studied here. They did exhibit the following rather minor differences. The shell of Parafossarulus has spirally raised ridges, and its apex is usually eroded; the other two genera lack these characteristics. The shell of B. (Gabbia) misella is small, nor exceeding 7.5 mm in length, while the shells of the other two species are larger, being more than 10 mm in length. Scanning electron microscopy (SEM) of the protoconch of P. manchouricus reveals nearly smooth sculpture with small, low, spiral wrinkles. This sculpture is quite different from that of the Hydrobiidae, a family to which the bithyniids are frequently assigned. Scanning electron microscopy of the radulae of the three bithyniid species showed that their radular morphologies are very similar, but there are some small differences, which may be species-specific. There were some statistical differences in shell heights between the Korean and the other populations of P. manchouricus, and between this species and the other two bithyniids as well. The shell differences between the several populations of Korean P. manchouricus may be related to environment. Edtails of the chromosome cycle of these bithyniid snails are similar to those reported for other snails. No specific differences were observed in the chromosome cycle between the various species and populations of snails employed in this study. Reporred for the first time in molluscs are two darkly stained "nucleolar organizers" during pachyterne stages of meiosis. Two different chromosome numbers were observed in the three bithyniid species: n=17 in B. tentaculata and P. manchouricus, and n=18 in B. (G.) misella. no sex chromosomes or supernumerary chromosomes were seen. There were no morphological differences in karyotypes of three Korean strains of P. manchouricus. The infection rates of cercariae of Clonorchis sinensis in Chinju and Kunsan strains of P. manchouricus were 0.14% and 1.25%, respectively. However, Clonorchis cercariae were found in Chongpyung strain of P. manchouriceu and Gongju strain of B. (G.) misella. The habitats of P. manchouricus around Jinyang Lake were relatively clean without any heavy pollution of aquatic microorganisms and organic materials during the period of this study. The levels of dissolved oxygen (D.O.) and biochemical oxygen demand (B.O.D.) of the water specimens sampled from the study areas ranged from 6.0 to 9.6 ppm and from 0.4 to 1.6 ppm, respectively. Eight metalic constituents from the water samples were also assayed, and all metalic ions detercted were remarkably low below the legal criteria. However, calcium ion in the water samples from the habitats of P. manchouricus was considerably higher than others.

  • PDF

Phytoplankton Diversity and Community Structure Driven by the Dynamics of the Changjiang Diluted Water Plume Extension around the Ieodo Ocean Research Station in the Summer of 2020 (2020년 하계 장강 저염수가 이어도 해양과학기지 주변 해역의 식물플랑크톤 다양성 및 개체수 변화에 미치는 영향)

  • Kim, Jihoon;Choi, Dong Han;Lee, Ha Eun;Jeong, Jin-Yong;Jeong, Jongmin;Noh, Jae Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.924-942
    • /
    • 2021
  • The expansion of the Changjiang Diluted Water (CDW) plume during summer is known to be a major factor influencing phytoplankton diversity, community structure, and the regional marine environment of the northern East China Sea (ECS). The discharge of the CDW plume was very high in the summer of 2020, and cruise surveys and stationary monitoring were conducted to understand the dynamics of changes in environmental characteristics and the impact on phytoplankton diversity and community structure. A cruise survey was conducted from August 16 to 17, 2020, using R/V Eardo, and a stay survey at the Ieodo Ocean Research Station (IORS) from August 15 to 21, 2020, to analyze phytoplankton diversity and community structure. The southwestern part of the survey area exhibited low salinity and high chlorophyll a fluorescence under the influence of the CDW plume, whereas the southeastern part of the survey area presented high salinity and low chlorophyll a fluorescence under the influence of the Tsushima Warm Current (TWC). The total chlorophyll a concentrations of surface water samples from 12 sampling stations indicated that nano-phytoplankton (20-3 ㎛) and micro-phytoplankton (> 20 ㎛) were the dominant groups during the survey period. Only stations strongly influenced by the TWC presented approximately 50% of the biomass contributed by pico-phytoplankton (< 3 ㎛). The size distribution of phytoplankton in the surface water samples is related to nutrient supplies, and areas where high nutrient (nitrate) supplies were provided by the CDW plume displayed higher biomass contribution by micro-phytoplankton groups. A total of 45 genera of nano- and micro-phytoplankton groups were classified using morphological analysis. Among them, the dominant taxa were the diatoms Guinardia flaccida and Nitzschia spp. and the dinoflagellates Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, and Tripos furca. The sampling stations affected by the TWC and low in nitrate concentrations presented high concentrations of photosynthetic pico-eukaryotes (PPE) and photosynthetic pico-prokaryotes (PPP). Most sampling stations had phosphate-limited conditions. Higher Synechococcus concentrations were enumerated for the sampling stations influenced by low-nutrient water of the TWC using flow cytometry. The NGS analysis revealed 29 clades of Synechococcus among PPP, and 11 clades displayed a dominance rate of 1% or more at least once in one sample. Clade II was the dominant group in the surface water, whereas various clades (Clades I, IV, etc.) were found to be the next dominant groups in the SCM layers. The Prochlorococcus group, belonging to the PPP, observed in the warm water region, presented a high-light-adapted ecotype and did not appear in the northern part of the survey region. PPE analysis resulted in 163 operational taxonomic units (OTUs), indicating very high diversity. Among them, 11 major taxa showed dominant OTUs with more than 5% in at least one sample, while Amphidinium testudo was the dominant taxon in the surface water in the low-salinity region affected by the CDW plume, and the chlorophyta was dominant in the SCM layer. In the warm water region affected by the TWC, various groups of haptophytes were dominant. Observations from the IORS also presented similar results to the cruise survey results for biomass, size distribution, and diversity of phytoplankton. The results revealed the various dynamic responses of phytoplankton influenced by the CDW plume. By comparing the results from the IORS and research cruise studies, the study confirmed that the IORS is an important observational station to monitor the dynamic impact of the CDW plume. In future research, it is necessary to establish an effective use of IORS in preparation for changes in the ECS summer environment and ecosystem due to climate change.