Browse > Article
http://dx.doi.org/10.7850/jkso.2019.24.1.001

Monthly HPLC Measurements of Pigments from an Intertidal Sediment of Geunso Bay Highlighting Variations of Biomass, Community Composition and Photo-physiology of Microphytobenthos  

KIM, EUN YOUNG (Department of Convergence Studies on Ocean Science and Technology, School of Ocean Science and Technology, Korea Maritime and Ocean University)
AN, SUNG MIN (Marine Ecosystem and Biological Research Center, KIOST)
CHOI, DONG HAN (Department of Convergence Studies on Ocean Science and Technology, School of Ocean Science and Technology, Korea Maritime and Ocean University)
LEE, HOWON (Marine Ecosystem and Biological Research Center, KIOST)
NOH, JAE HOON (Department of Convergence Studies on Ocean Science and Technology, School of Ocean Science and Technology, Korea Maritime and Ocean University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.24, no.1, 2019 , pp. 1-17 More about this Journal
Abstract
In this study, the surveys were carried out from October (2016) to October (2017) along the tidal flat of Geunso Bay, Taean Peninsula of the western edge of Korea. The sampling trips were carried out for a total of 16 times, once or twice a month. In order to investigate the monthly variation of the microphytobenthos (MPB) biomass, community composition and photo-physiology were analyzed by HPLC (High performance liquid chromatography). The total chlorophyll a (TChl a) concentrations used as an indicator of biomass of MPB in the upper 1 cm sediment layer ranged from 40.4 to $218.9mg\;m^{-2}$ throughout the sampling period. TChl a concentrations showed the maximum level on $24^{th}$ of February and remained high throughout March after which it started to declined. The biomass of MPB showed high values in winter and low values in summer. The monthly variations of Phaeophorbide a concentrations suggested that the low grazing intensity of the predator in the winter may have partly attributed to the MPB winter blooming. As a result of monthly variations of the MPB community composition using the major marker pigments, the concentrations of fucoxanthin, the marker pigment of benthic diatoms, were the highest throughout the year. The concentrations of most of the marker pigments except for chlorophyll b (chlorophytes) and peridinin (dinoflagellates) increased in winter. However, the concentrations of fucoxanthin increased the highest, and the relative ratios of the major marker pigments to TChl a except fucoxanthin decreased during the same period. The vertical distribution of Chl a and oxygen concentrations in the sediments using a fluorometer and an oxygen micro-optode Chl a concentrations decreased with oxygen concentrations with increasing depth of the sediment layers. Moreover, this tendency became more apparent in winter. The Chl a was uniformly vertical down to 12 mm from May to July, but the oxygen concentration distribution in May decreased sharply below 1 mm. The increase in phaeophorbide a concentration observed at this time is likely to be caused by increased oxygen consumption of zoobenthic grazing activities. This could be presumed that MPB cells are transported downward by bioturbation of zoobenthos. The relative ratios (DT/(DD+DT)) obtained with diadinoxanthin (DD) and diatoxanthin (DT), which are often used as indicators of photo-adaptation of MPB, decreased from October to March and increased in May. This indicated that there were monthly differences in activity of Xanthophyll cycle as well.
Keywords
Microphytobenthos; Photosynthetic pigments; Tidal flat; Vertical distribution; Diadinoxanthin; Diatoxanthin;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Hejdukova, E., 2016. Tolerance of pennate diatoms (Bacillariophyceae) to experimental freezing: comparison of polar and temperate strains. Ph.D. Thesis, Charles University, Czech, 13-14, 43-44 pp.
2 Hwang, C.Y. and B.C. Cho, 2005. Measurement of net photosynthetic Rates in intertidal flats of Ganghwa-gun and Incheon north harbor using oxygen microsensors. J. Korean Soc. Ocean., 10: 31-37.
3 Jesus, B., V. Brotas, M. Marani and D.M. Paterson, 2005. Spatial dynamics of microphytobenthos determined by PAM fluorescence. Estuar. Coast. Shelf Sci., 68: 547-556.   DOI
4 Jonsson, B., K. Sundback and C. Milsson, 1994. An upright life-form of an epipelic motile diatom: on the behavior of Gyrosigma balticum. Eur. J. Phycol., 29: 11-15.   DOI
5 Kim, D.S. and K.H. Kim, 2008. Tidal and seasonal variations of nutrients in Keunso bay, the yellow sea. Ocean Polar Res., 30(1): 1-10.   DOI
6 Kim, J.H. and K.J. Cho, 1985. The Physico-chemical properties of sediment, the species composition and biomass of benthic diatoms in the intertidal zone of Kum river estuary. J. Ecol. Environ., 8: 21-29.
7 Kim, J.N., Y.J. Choi, K.H. Im, K.H. Choi and C.W. Ma, 2005. Species composition and seasonal variation of decapod crustacean assemblage in Hampyeong Bay. Korea. J. Kor. Fish Soc., 38(1): 20-28.
8 Kingston, M.B. and J.S. Gough, 2009. Vertical migration of a mixed-species Euglena (Euglenophyta) assemblage inhabiting the high-intertidal sands of Nye beach, Oregon. J. Phycol., 45: 1021-1029.   DOI
9 KIOST, 2010. Studies on sediments waters and biota to understand major environmental factors in rehabilitation of degraded tidal flats. Korean Institute of Ocean Science and Technology. BSPE98462-2253-5. 436 p.
10 Krembs, C., H. Eicken and J.W. Deming, 2011. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic. PNAS, 108: 3653-3658.   DOI
11 Kromkamp, J.C., C. Barranguet and J. Peene, 1998. Determination of microphytobenthos PSII quantum efficiency and phytosynthetic activity by means of variable chlorophyll fluorescence. Mar. Ecol. Prog. Ser., 162: 45-55.   DOI
12 Kuhl, M., R.N. Glud, H. Ploug, N.B. Ramsing, 1996. Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J. Phycol., 32: 799-812.   DOI
13 MacIntyre, H.L., R.J. Geider and D.C. Miller, 1996. Microphytobenthos: The ecological role of the "secret garden" of unvegetated, shallow-water marine habitats. 1. Distribution, abundance and primary production. Estuar. Coast., 19: 186-201.   DOI
14 Meyer, A.A., M. Tackx and N. Daro, 2000. Xanthophyll cycling in Phaeocystis globosa and Thalassiosira sp.: a possible mechanism for species succession. J. Sea Res., 43: 273-384.
15 Min, W.G., D.S. Kim and J.H. Le, 2006. Community structure and spatial variation of meiobenthos associated with and artificial structure. J. Kor. Fish Soc., 39: 223-230.
16 NASA, 2012. The Fifth SeaWiFS HPLC Analysis Round-Robin Experiment (SeaHARRE-5). NASA ocean color paper NASA/TM-2012-217503, 12 p.
17 Nielsen, L.P., P.B. Christensen and N.P. Revsbech, 1990. Denitrification and photosynthesis in stream sediment studied with microsensors and whole-core techniques. Limnol. Oceanogr., 35: 1135-1144.   DOI
18 Goto, N., O. Mitamura and H. Terai, 2000. Seasonal variation in primary production of microphytobenthos at the Isshiki intertidal flat in Mikawa Bay. Limnol. (Japanese), 1: 133-138.   DOI
19 Nowicki, B.I. and S.W. Nixon, 1985. Benthic community metabolism in a coastal lagoon ecosystem. Mar. Ecol. Prog. Ser., 22: 21-30.   DOI
20 Gould, D.M. and E.D. Gallagher, 1990. Field measurements of specific growth rate, biomass, and primary production of benthic diatoms of Savin Hill Cove, Boston. Limnol. Oceanogr., 35: 1757-1770.   DOI
21 Halldal, P., 1970. The photosynthetic apparatus of microalgae and its adaptation to environmental factors. In: Photobiology of microorganisms, edited by Halldal, P., Wiley, New York, 17-56 pp.
22 Hay, S.I., T.C. Maitland and D.M. Paterson, 1993. The speed of diatom migration through natural and artificial substrata. Diatom Res., 8: 371-384.   DOI
23 Heip, C.H.R., N.K. Goosen, P.M.J. Herman, J. Kromkamp, J.J. Middelburg and K. Soetaert, 1995. Production and consumption of biological particles in temperate tidal estuaries. Oceanogr. Mar. Biol. Ann. Rev., 33: 1-149.
24 Admiraal, W., 1984. The ecology of estuarine sediment inhabiting diatoms. Prog. phycol. Res., 3: 269-322.
25 Barranguet, C., P.M.J. Herman and J.J. Sinke, 1997. Microphytobenthos biomass and community composition studied by pigment biomarkers: importance and fate in the carbon cycle of a tidal flat. J. Sea. Rea., 38: 59-70.   DOI
26 Bebout, B.M. and F. Garcia-Pichel, 1995. UV B-induced Vertical Migrations of Cyanobacteria in a Microbial Mat. Environ. Microbiol., 61: 4215-4222.   DOI
27 Oh, S.J., C.H. Moon and M.O. Park, 2004. HPLC analysis of biomass and community composition of microphytobenthos in the Saemankeum tidal flat, west coast of Korea. J. Kor. Fish Soc., 37: 215-225.
28 Bidigare, R.P., T.J. Frank, C. Zastrow and J.M. Brooks, 1986. The distribution of algal chlorophylls and their degradation products in the Southern Ocean. Deep-Sea Res., 33: 923-937.
29 Underwood, G.J.C. and J. Kromkamp, 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Adv. Ecol. Res., 29: 93-153.   DOI
30 Oh, S.H., 1990. Environmental characteristics and diatom communities on the Mangyung-Dongjin Tidal flat, West coast of Korea. M.D. Thesis, Seoul National University, Seoul, 99 p.
31 Olaizola, M. and H.Y. Yamamoto, 1994. Short-term response of the diadinoxanthin cycle and fluorescence yield to high irradiance in Chaetoceros-muelleri (Bacillariophyceae). J. phycol., 20: 606-612.   DOI
32 Perkins, R.G., K. Oxborough, A.R.M. Hanlon, G.J.C. Underwood and N.R. Baker, 2002. Can chlorophyll fluorescence be used to estimate the rate of photosynthetic electron transport within microphytobenthic biofilm? Mar. Ecol. Prog. Ser., 228: 47-56.   DOI
33 Perry, M.J., M.C. Talbot and S.A. Alberts, 1981. Photoadaptation in marine phytoplankton: response of the photosynthetic unit. Mar Biol., 62: 91-101.   DOI
34 Plante-Cuny, M.R. and A. Bodoy, 1987. Biomasse et production primarie du phytoplankton et du microphytobenthos de deux biotopes sableux (Golfe de Fos, France). Oceanology Acta.,10: 223-237.
35 Prezelin, B.B. and B.M. Sweeney, 1978. Photoadaptation of photosynthesis in Gonyaulax polyedra. Mar. Biol., 48: 17-35.
36 Varela, M. and E. Penas, 1985. Primary production of benthic microalgae in an intertidal sand flat of the Ria de Arosa, NM spain. Mar. Ecol. Prog. Ser., 25: 111-119.   DOI
37 Zapata, M., F. Rodriguez and L. Garrido, 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser., 195: 29-45.   DOI
38 Pesce, S., I. Batisson, C. Bardot, C. Fajon, C. Portelli, B. Montuelle and J. Bohatier, 2009. Response of spring and summer riverine microbial communities following glyphosate exposure. Ecotoxicol. Environ. Saf., 72(7): 1905-1912.   DOI
39 van Leeuwe, M.A., V. Brotas, M. Consalvey, R.M. Forster, D. Gillespie, B. Jesus, J. Roggeveld and W.W.C. Gieskes, 2008. Photoacclimation in microphytobenthos and the role of xanthophyll pigments. Eur. J. Phycol., 43(2): 123-132.   DOI
40 Welsh, D.T., 2000. Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiology Reviews, 24: 263-290.   DOI
41 Woods Hole, 1997. U.S. Joint Global Ocean Flux Study, Bermuda Atlantic Time-series Study. Data Report for BATS 61-BATS 72.
42 Consalvey, M, D.M. Paterson and G.J.C Underwood, 2004. The ups and downs of life in a benthic biofilm: Migration of benthic diatoms. Diatom Res., 19: 181-202.   DOI
43 de Jonge, V.N. and F. Colijn, 1994. Dynamics of microphytobenthos biomass in the Ems estuary. Mar. Ecol. Prog. Ser., 104: 185-196.   DOI
44 Davis, M.W. and C.D. Mcintire, 1983. Effects of physical gradients on the production dynamics of sediment-associated algae. Mar. Ecol. Prog. Ser., 13: 103-114.   DOI
45 Riper, D.M., T.G. Owens and P.G. Falkowski, 1979. Chlorophyll turnover in Skeletonema costatum, a marine plankton diatom. Plant Physiol., 64: 49-54.   DOI
46 Demers, S., S. Roy, R. Gagnon and C. Vignault, 1991. Rapid light-induced changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrium excavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae): a photo-protection mechanism. Mar. Ecol. Prog. Ser., 76: 185-193.   DOI
47 Denis, L., F. Gevaert and N. Spilmont, 2012. Microphytobenthic production estimated by in situ oxygen microprofiling: short-term dynamics and carbon budget implications. J. Soils sediments, 12: 1517-1529.   DOI
48 Raven, P.H., P.F. Evert and S.E. Eichorn, 1992. Biology of Plants. Worth Publishers, New York, 791 pp.
49 Roy, S., C. Llewelly, E.S. Egeland and G. Johnsen, 2011. Phytoplankton pigments (Characterization, chemotaxonomy and Applications of Oceanography). Cambridge University Press, Cambridge, 37, 46-54 pp.
50 Serodio, J., J.M. da Silca, F. Catarino, 1997. Non-destructive tracing of migratory rhythms of intertidal benthic microalgae using in vivo chl-a fluorescence. J. phycol., 33: 545-553.
51 Shim, J.H. and B.C. Joe, 1984. Community composition of microphytobenthos living in intertidal zone near Incheon, Symposium of College of Natural science, Seoul National University, 9: 135-150.
52 Shin, A.Y., D.S. Kim, T.W. Kang, J.H. Oh, J.M. Lee and J.S. Hong, 2016. Seasonal fluctuation of meiobenthic fauna community at Keunso tidal flat in Taean, Korea. J. Korean soc. Ocean., 21(4): 144-157.
53 Sukenik, A., K.D. Wyman, J. Bennnett and P.G. Falkowski, 1987. A novel mechanism for regulating the excitation of photosystem II in a green alga. Nature Lond., 327: 704-707.   DOI
54 Du, G.Y., M. Son, S. An and I.K. Chung, 2010. Temporal variation in the vertical distribution of microphytobenthos in intertidal flats of the Nakdong River esturary, Korea. Estuar. Coast. Shelf Sci., 86: 62-70.   DOI
55 Sullivan, M.J. and F.C. Daiber, 1975. Light, nitrogen, and phosphorous limitation of edaphic algae in a Delaware salt marsh. J. Exp. Mar. Biol. Ecol., 18: 79-88.   DOI
56 Sullivan, M.J. and C. Moncreiff, 1990. Edaphic algae are an important component of salt marsh food-webs: evidence from multiple stable isotope analysis, Mar. Ecol. Prog. Ser., 32: 149-159.   DOI
57 Sun, M.Y., R.C. Aller and C. Lee, 1994. Spatial and temporal distributions of sedimentary chloropigments as indicators of benthic processes in Long Island Sound. J. Mar. Res., 52: 149-176.   DOI
58 Elisabeth, A. and J.M. Bernhard, 1995. Vertical migratory response of benthic foraminifera to controlled oxygen concentrations in an experimental mesocosm. Mar. Ecol. Prog. Ser., 116: 137-151.   DOI
59 EPA, 1997. Method 445.0. In vitro determination of chlorophyll a and pheophytin a in marine and freshwater algae by fluorescence. 8-9 pp.
60 Yallop, M.L., B. Winder, D.M. Paterson and L.J. Stal, 1994. Comparative structure, Primary production and biogenic stabilization of cohensive and non-cohensive marine sediments inhabited by microphytobenthos. Estuar. Coast. Shelf Sci.,39: 565-582.   DOI
61 Yoo, M.H. and J.K. Choi, 2005. Seasonal distribution and primary production of microphytobenthos on an intertidal mud flat of the Janghwa in Ganghwa Island, Korea. J. Korean Soc. Ocean., 10: 8-18.
62 Young, A.J. and H.A. Frank, 1996. Energy transfer reactions involving carotenoids: quenching of chlorophyll fluorescence. J. Photochem. Photobiol. B: Biol., 36: 3-15.   DOI
63 Yun, M.S., C.H. Lee and I.K. Chung, 2009. Influence of Temperature on the Photosynthetic Responses of Benthic Diatoms: Fluorescence Based Estimates. J. Korean Soc. Ocean., 14(2): 118-126.
64 Brown, B.E., R.P. Dunne, M.E. Warner, I. Ambarsari, W.K. Fitt, W. Gibb and D.G. Cummings, 2000. Damage and recovery of Photosystem II during a manipulative field experiment on solar bleaching in the coral Goniastrea aspera. Mar. Ecol. Prog. Ser., 195: 117-124.   DOI
65 Burkill, P.H., R.F.C Mantoura, C.A. Llewellyn and N.J.P. Owens, 1987. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar. Biol., 93: 581-590.   DOI
66 Buffan-Dubau, E. and K.R. Carman, 2000. Extraction of benthic microalgal pigments for HPLC analyses. Mar. Ecol. Prog. Ser., 204: 293-297.   DOI
67 An, S.M., D.H. Choi, H. Lee and J.H. Noh, 2017. Identification of benthic diatoms isolated from the eastern tidal flats of the Yellow Sea: Comparison between morphological and molecular approaches. Plos one, 12(6): e0179422.   DOI
68 An, S.M., D.H. Choi, H. Lee, J.H. Lee and J.H. Noh, 2018. Next-generation sequencing reveals the diversity of benthic diatoms in tidal flats. Algae, 33(2): 167-180.   DOI
69 Chan, A.T., 1978. Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. I. Growth under continuous light. J Phycol., 14: 396-402.   DOI
70 Cadee, G.C. and J. Hegeman, 1974. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. Neth. J. Sea Res., 8: 260-291.   DOI
71 Choi, Y.H., Y.S. Choi, Y.S. Cho, Y.T. Kim and S.R. Jeon, 2016. A study on the habitat suitability considering survival, Growth, Environment for Ruditapes philippinarum in Geunso Bay (Pado and Beopsan). J. Korean. Soc. Mar. Environ. Saf., 22: 723-730.   DOI
72 Colijn, F. and V.N. de Jonge, 1984. Primary production of microphytobenthos in the Ems-Dollard Estuary. Mar. Ecol. Prog. Ser., 14: 185-196.   DOI
73 Lee, Y.W., 2001. Studies on pigment analysis of microphytobenthos by HPLC in sediment of Gomso Bay, Korea. M.S. Thesis, Pukyong National University, Busan, 56-69 pp.
74 Forster, R.M. and J.C. Kromkamp, 2004. Modelling the effects of chlorophyll fluorescence from subsurface layers on photosynthetic efficiency measurements in microphytobenthic algae. Mar. Ecol. Prog. Ser., 264: 9-22.   DOI
75 Lee, Y.W., E.J. Choi, Y.S. Kim and C.K. Kang, 2009. Seasonal variations of microphytobenthos in sediments of the estuarine muddy sandflat of Gwangyang Bay: HPLC Pigment Analysis. J. Korean Soc. Oceanogr., 14: 48-55.
76 Lukatelich, R.J. and A.J. McComb, 1986. Distribution and abundance of benthic microalgae in a shallow southwestern Australian esturarine system. Mar. Ecol. Prog. Ser., 27: 287-297.   DOI
77 Falkowski, P.G. and T.G. Owens, 1980. Light-shade adaptation: 2 strategies in marine phytoplankton. Plant Physiol., 66: 592-595.   DOI
78 Frank, H.A. and R.J. Cogdell, 1996. Carotenoids in photosynthesis. Photochem. Photobiol., 63: 257-364.   DOI
79 Lee, H.Y., 2013. Diversity and biomass of benthic diatoms in Hampyeong bay tidal flats. Korean J. Environ. Biol., 31(4): 295-301.   DOI
80 Larras, F., B. Montuelle, F. Rimet, N. Chevre, and A.Bouchez, 2014. Seasonal shift in the sensitivity of a natural benthic microalgal community to a herbicide mixture: impact on the protective level of thresholds derived from species sensitivity distributions. Ecotoxicology, 23(6): 1109-1123.   DOI
81 Lee, I.G., S.M. Boo and S.H. Lee, 2004. Diversity and system of Microalgae. Life Science Publishing Co., Lehi, 66 pp.