DOI QR코드

DOI QR Code

Comparative Analysis of Diversity Characteristics (γ-, α-, and β-diversity) of Biological Communities in the Korean Peninsula Estuaries

하구 순환 유지 여부에 따른 하구 주요 생물 군집별 다양성 특성 연구: 열린하구와 닫힌하구에서의 γ-, α- 및 β-다양성 비교

  • Oh, Hye-Ji (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Jang, Min-Ho (Department of Biology Education, Kongju National University) ;
  • Kim, Jeong-Hui (EcoResearch Incorporated) ;
  • Kim, Yong-Jae (Department of Life Science, Daejin University) ;
  • Lim, Sung-Ho (Doohee Institute of Ecological Research, Korea Ecosystem Service Inc.) ;
  • Won, Doo-Hee (Doohee Institute of Ecological Research, Korea Ecosystem Service Inc.) ;
  • Moon, Jeong-Suk (Water Environmental Engineering Research Division, National Institute of Environmental Research) ;
  • Kwon, Soonhyun (Water Environmental Engineering Research Division, National Institute of Environmental Research) ;
  • Chang, Kwang-Hyeon (Department of Environmental Science and Engineering, Kyung Hee University)
  • 오혜지 (경희대학교 환경학및환경공학과) ;
  • 장민호 (공주대학교 생물교육과) ;
  • 김정희 (주식회사 에코리서치) ;
  • 김용재 (대진대학교 생명과학과) ;
  • 임성호 ((주)생태조사단 부설 두희생태연구소) ;
  • 원두희 ((주)생태조사단 부설 두희생태연구소) ;
  • 문정숙 (국립환경과학원 물환경공학연구과) ;
  • 권순현 (국립환경과학원 물환경공학연구과) ;
  • 장광현 (경희대학교 환경학및환경공학과)
  • Received : 2022.03.11
  • Accepted : 2022.03.18
  • Published : 2022.03.31

Abstract

Estuary is important in terms of biodiversity because it has the characteristics of transition waters, created by the mixing of fresh- and seawater. The estuarine water circulation provides a variety of habitats with different environments by inducing gradients in the chemical and physical environment, such as water quality and river bed structure, which are ultimately the main factors influencing biological community composition. If the water circulation is interrupted, the loss of brackish areas and the interception of migration of biological communities will lead to changes in the spatial distribution of biodiversity. In this study, among the sites covered by the Estuary Aquatic Ecosystem Health Assessment, we selected study sites where changes in biodiversity can be assessed by spatial gradient from the upper reaches of the river to the lower estuarine area. The α-, γ- and β-diversity of diatom, benthic macroinvertebrates, and fish communities were calculated, and they were divided into open and closed estuary data and compared to determine the trends in biodiversity variation due to estuarine circulation. As results, all communities showed higher γ-diversity at open estuary sites. The benthic macroinvertebrate community showed a clear difference between open and closed estuaries in β-diversity, consequently the estuarine transects were considered as a factor that decreases spatial heterogeneity of their diversity among sites. The biodiversity trends analyzed in this study will be used to identify estuaries with low γ- and β-diversity by community, providing a useful resource for further mornitoring and management to maintain estuarine health.

하구 생태계는 담수와 해수의 혼합으로 형성되는 전이수역(transitional waters)이라는 특이성을 가지며, 염분 및 영양염 농도와 같은 수질 환경이 서로 다른 다양한 서식처를 구성하고 있어 생물 다양성 측면에서 매우 중요하게 여겨진다. 하구 순환은 수질은 물론 하상과 같은 물리학적 환경의 구배(gradient)를 유발하여 최종적으로 생물 군집 조성에 영향을 주는 주요 기작으로, 순환이 단절될 경우 기수역 형성을 저해하고 생물의 이동을 차단하게 되어 생물상의 공간 분포, 즉 다양성에 영향을 미치게 된다. 본 연구에서는 하구 수생태계 건강성 평가 대상 지점 중 상류부터 하류까지 공간 구배에 따른 생물 다양성 평가가 가능한 복수 지점들로 구성된 하구를 선별하여 부착돌말류, 저서성 대형무척추동물 및 어류 군집을 대상으로 α-, γ- 및 β-다양성을 산출, 그 경향을 파악하여 열린하구와 닫힌하구 간 비교를 통해 하구 순환 유지·단절에 따른 하구 구간 내 종 다양성 변동 경향을 파악하였다. 그 결과, 모든 분류군에서 하구를 포함한 하천 구간 전체의 종 다양성을 나타내는 γ-다양성이 닫힌하구와 비교했을 때 열린하구에서 평균적으로 높은 경향이 나타났으며, 구간 내 지점 간 종 다양성 변동을 의미하는 β-다양성의 경우, 저서생물에서만 열린·닫힌하구 간 차이가 비교적 뚜렷하게 나타나 하구 순환 단절이 하구 구간 내 지점들 간 저서생물 종 조성 및 풍부도의 공간적 이질성(heterogeneity)을 감소시키는 요인으로 작용한 것으로 판단된다. 수질 환경 구배에 따른 각 생물 군집의 하구 구간 내 지점별 α-다양성 및 β-다양성에 기여하는 정도(LCBD, LCBDt, LCBDn)의 반응을 파악하고자 상관관계 분석을 실시한 결과, 열린하구 대비 닫힌하구에서 대체로 보다 높은 상관계수(r)가 분석되었으며 두 하구 유형에서 보여지는 상관관계가 상반되는 경향을 보였으나, 대부분 r 값이 ±0.4 이하로 지점별 다양성 지수와 환경 요인 간에는 뚜렷한 상관성은 나타나지 않았다. 향후 생물 기능군(functional group), 생활사와 같은 군집별 특성을 고려하여 다양성에 영향을 줄 수 있는 서식처 환경요인(예: 유속, 하상)들과의 추가적인 관계 분석을 통해 하구 순환 유지 여부에 따른 생물 군집의 반응을 이해한다면 생물 다양성 관리에 활용 가능할 것으로 판단된다. 한편, 본 연구에서는 분석 대상 하구의 생물 다양성 현황을 바탕으로 형산강 및 교성천 하구에서 부착돌말류, 발안천 하구에서 저서생물, 교청선, 불갑천 및 판교천(서천) 하구에서 어류 군집의 γ- 및 β-다양성이 낮게 나타나는 것을 파악하였으며, 이러한 현황 파악은 지속적으로 하구 수생태 모니터링을 수행하는데 있어 생물 다양성 측면에서 건강성 유지를 위한 하구 생태계 관리에 중요한 자료로 활용될 수 있도록 하였다.

Keywords

Acknowledgement

본 연구는 국립환경과학원 연구사업의 지원을 받아 수행하였습니다(NIER-2020-04-02-009).

References

  1. Anderson, M.J., T.O. Crist, J.M. Chase, M. Vellend, B.D. Inouye, A.L. Freestone, N.J. Sanders, H.V. Cornell, L.S. Comita, K.F. Davies, S.P. Harrison, N.J.B. Kraft, J.C. Stegen and N.G. Swenson. 2011. Navigating the multiple meanings of β-diversity: a roadmap for the practicing ecologist. Ecological Letters 14: 19e28.
  2. Baselga, A., D. Orme, S. Villeger, J. De Bortoli, F. Leprieur and M. Logez. 2021. betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package version 1.5.4. https://CRAN.R-project.org/package=betapart
  3. Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169-193. https://doi.org/10.1890/10-1510.1
  4. Baek, S.H., J.D. Yoon, J.H. Kim, H.J. Lee, K.R. Choi and M.H. Jang. 2013. Characteristics of fish community in the Seomjin River and Brackish Area. Korean Journal of Environmental Biology 31: 402-410. https://doi.org/10.11626/KJEB.2013.31.4.402
  5. Baselga, A. 2010. Partitioning the turnover and nestedness components of beta diversity. Marine Environmental Research 81: 43-52. https://doi.org/10.1016/j.marenvres.2012.08.006
  6. Baselga, A. and C.D.L. Orme. 2012. betapart: an R package for the study of beta diversity. Methods in Ecology and Evolution 3: 808-812. https://doi.org/10.1111/j.2041-210X.2012.00224.x
  7. Baselga, A. 2017. Partitioning abundance-based multiple-site dissimilarity into components: Balanced variation in abundance and abundance gradients. Methods in Ecology and Evolution 8: 799-808. https://doi.org/10.1111/2041-210X.12693
  8. Barros, F., H. Blanchet, K. Hammerstrom, P.G. Sauriau and J. Oliver. 2014. A framework for investigating general patterns of benthic β-diversity along estuaries. Estuarine, Coastal and Shelf Science 149: 223-231. https://doi.org/10.1016/j.ecss.2014.08.025
  9. Bevilacqua, S., A. Plicanti, R. Sandulli and A. Terlizzi. 2012. Measuring more of β-diversity: quantifying patterns of variation in assemblage heterogeneity. An insight from marine benthic assemblages. Ecological Indicator 18: 140-148. https://doi.org/10.1016/j.ecolind.2011.11.006
  10. da Silva, P.G., J.M. Lobo, M.C. Hensen, F.Z. Vaz-de-Mello and M.I.M. Hernandez. 2018. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Diversity and Distributions 24: 1277-1290. https://doi.org/10.1111/ddi.12763
  11. de Juan, S., S.F. Thrush and J.E. Hewitt. 2013. Counting on β-diversity to safeguard the resilience of estuaries. PLoS One 8(6): e65575. https://doi.org/10.1371/journal.pone.0065575
  12. Dray, S., D. Bauman, G. Blanchet, D. Borcard, S. Clappe, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N. Madi and H.H. Wagner. 2021. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-14. https://CRAN.R-project.org/package=adespatial
  13. Giberto, D.A., C.S. Bremec, A. Cortelezzi, A.R. Capitulo and A. Brazeiro. 2007. Ecological boundaries in estuaries: macrobenthic β-diversity in the Rio de la Plata system (34-36 S). Journal of the Marine Biological Association of the United Kingdom 87(2): 377-381. https://doi.org/10.1017/S0025315407050126
  14. Hewitt, J., S. Thrush, A. Lohrer and M. Townsend. 2010. A latent threat to biodiversity: consequences of small-scale heterogeneity loss. Biodiversity and Conservation 19(5): 1315-1323. https://doi.org/10.1007/s10531-009-9763-7
  15. Josefson, A.B. and C. Goke. 2013. Disentangling the effects of dispersal and salinity on beta diversity in estuarine benthic invertebrate assemblages. Journal of Biogeography 40(5): 1000-1009. https://doi.org/10.1111/jbi.12047
  16. Le Guen, C., S. Tecchio, J.C. Dauvin, G. De Roton, J. Lbry, M. Lepage, J. Morin, G. Lassalle, A. Raous and N. Niquil. 2019. Assessing the ecological status of an esturaine ecosystem: linking biodiversity and food-web indicators. Estuarine, Coastal and Shelf Science 228: 106339. https://doi.org/10.1016/j.ecss.2019.106339
  17. Lee, K.H., H.J. Cho, B.H. Rho and C.H. Lee. 2012. Defining the boundary of estuarine management zone for estuarine environmental management. Journal of the Korean Society of Oceanography 17: 203-224.
  18. Legendre, P., D. Borcard and P.R. Peres-Neto. 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75(4): 435-450. https://doi.org/10.1890/05-0549
  19. Legendre, P. and M. De Caceres. 2013. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters 16(8): 951-963. https://doi.org/10.1111/ele.12141
  20. Maloufi, S., A. Catherine, D. Mouillot, C. Louvard, A. Coute, C. Bernard and M. Troussellier. 2016. Environmental heterogeneity among lakes promotes hyper β-diversity across phytoplankton communities. Freshwater Biology 61: 633-645. https://doi.org/10.1111/fwb.12731
  21. Marzin, A., V. Archaimbault, J. Belliard, C. Chauvin, F. Delmas and D. Pont. 2012. Ecological assessment of running waters: Do macrophytes, macroinvertebrates, diatoms and fish show similar responses to human pressures? Ecological indicators 23: 56-65. https://doi.org/10.1016/j.ecolind.2012.03.010
  22. MOE/NIER. 2016-2018. Survey and assessment of estuary ecosystem. The Ministry of Environment/National Institute of Environmental Research, Incheon, Korea.
  23. NIER. 2016. Biomonitoring survey and assessment manual. National Institute of Environmental Research. National Institute of Environmental Research, Incheon, Korea.
  24. NIER. 2017. Biomonitering Survey and Assessment Manual. National Institute of Environmental Research, Incheon, Korea.
  25. NIER. 2019. Guideline for estuary aquatic ecosystem survey and health assessment. National Institute of Environmental Research, Incheon, Korea.
  26. Oksanen, J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. OHara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs and H. Wagner. 2020. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan
  27. Pitacco, V., M. Mistri, I.F. Aleffi, C. Lardicci, S. Prato, D. Tagliapietra and C. Munari. 2019. Spatial patterns of macrobenthic alpha and beta diversity at different scales in Italian transitional waters (central Mediterranean). Estuarine, Coastal and Shelf Science 222: 126-138. https://doi.org/10.1016/j.ecss.2019.04.026
  28. R Core Team. 2021. R: A language and environment for statistical computing. Vienna, Austria. Ver. 4.1.2. R Foundation for Statistical Computing. http://www.R-project.org/.
  29. Remane, A. 1934. Die Brackwasserfauna. Verhandlungen Der Deutschen Zoologischen Gesellschaft 36: 34e74.
  30. Ryther, J.H. 1969. Photosynthesis and fish production in the sea. The production of organic matter and its conversion to higher forms of life vary throughout the world ocean. Science 166: 72-76. https://doi.org/10.1126/science.166.3901.72
  31. Soininen, J. 2010. Species turnover along abiotic and biotic gradients: Patterns in space equal patterns in time? BioScience 60(6): 433-439. https://doi.org/10.1525/bio.2010.60.6.7
  32. Teske, P.R. and T.H. Wooldridge. 2004. Affinities of some common estuarine macroinvertebrates to salinity and sediment type: empirical data from Eastern Cape estuaries, South Africa. African Zoology 39: 183-192. https://doi.org/10.1080/15627020.2004.11657215
  33. Whitfield, A.K., M. Elliott, A. Basset, S.J. Blaber and R.J. West. 2012. Paradigms in estuarine ecology-a review of the Remane diagram with a suggested revised model for estuaries. Estuarine, Coastal and Shelf Science 97: 78-90. https://doi.org/10.1016/j.ecss.2011.11.026
  34. Witman, J.D., R.J. Etter and F. Smith. 2004. The relationship between regional and local species diversity in marine benthic communities: a global perspective. Proceedings of the National Academy of Sciences of the United 101: 15664-15669. https://doi.org/10.1073/pnas.0404300101
  35. Wu, K., W. Zhao, M. Li, F. Picazo, J. Soininen, J. Shen, L. Zhu, X. Cheng and J. Wang. 2020. Taxonomic dependency of beta diversity components in benthic communities of bacteria, diatoms and chironomids along a water-depth gradient. Science of the Total Environment 741: 140462. https://doi.org/10.1016/j.scitotenv.2020.140462
  36. Xu, G., W. Zhang and H. Xu. 2015. Can dispersions be used for discriminating water quality status in coastal ecosystems? A case study on bioflm-dwelling microbial eukaryotes. Ecological Indicator 57: 208-214. https://doi.org/10.1016/j.ecolind.2015.05.004