• Title/Summary/Keyword: DC voltage balancing

Search Result 126, Processing Time 0.029 seconds

A New Voltage Balancer With Bidirectional DC-DC Converter Function for EV Charging Station (전기자동차 충전소용 양방향 DC-DC 컨버터 기능을 갖는 전압 밸런서)

  • Nam, Hyun-Taek;Kim, Sanghun;Cha, Honnyong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.313-320
    • /
    • 2018
  • This study proposes a new voltage balancer with bidirectional DC-DC converter function. The proposed balancer can serve as a voltage balancer and a bidirectional DC-DC converter. Thus, the balancer can be applied to battery management systems or fast chargers in electric vehicles (EVs) charging stations while balancing bipolar DC bus voltages. The proposed system has unlimited voltage balancing range unlike the conventional voltage balancing control using a three-level DC-DC converter. A comparison of the voltage balancing range between the proposed and conventional scheme is explored to confirm this superiority. Simulation and experimental results are provided to validate the effectiveness of the proposed system.

A Selective Voltage Balancing Scheme of a Modular Multilevel DC-DC Converter for Solid-State Transformers (반도체 변압기용 모듈형 멀티레벨 DC-DC 컨버터의 선택적인 전압 균형 제어)

  • Lee, Eui-Jae;Kim, Seok-Min;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.652-658
    • /
    • 2019
  • This paper proposes the selective voltage balancing scheme of a modular multilevel DC-DC converter for solid-state transformers. In general, the sub-module capacitor voltage can be controlled uniformly by individual feedback controllers, however computation time increases according to the number of modules. The voltage balance control scheme in this paper can reduce the computation time by selecting and controlling sub-module of maximum/minimum voltage momentarily. The performance of the proposed selective voltage balancing scheme is verified by simulation.

Single Input Multi Output DC/DC Converter: An Approach to Voltage Balancing in Multilevel Inverter

  • Banaei, M.R.;Nayeri, B.;Salary, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1537-1543
    • /
    • 2014
  • This paper presents a new DC/AC multilevel converter. This configuration uses single DC sources. The proposed converter has two stages. The first stage is a DC/DC converter that can produce several DC-links in the output. The DC/DC converter is one type of boost converter and uses single inductor. The second stage is a multilevel inverter with several capacitor links. In this paper, one single input multi output DC-DC converter is used in order to voltage balancing on multilevel converter. In addition, as compare to traditional multilevel inverter, presented DC/AC multilevel converter has less on-state voltage drop and conduction losses. Finally, in order to verify the theoretical issues, simulation and experimental results are presented.

A Novel DC Bus Voltage Balancing of Cascaded H-Bridge Converters in D-SSSC Application

  • Saradarzadeh, Mehdi;Farhangi, Shahrokh;Schanen, Jean-Luc;Frey, David;Jeannin, Pierre-Olivier
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.567-577
    • /
    • 2012
  • This paper introduces a new scheme to balance the DC bus voltages of a cascaded H-bridge converter which is used as a Distribution Static Synchronous Series Compensator (D-SSSC) in electrical distribution network. The aim of D-SSSC is to control the power flow between two feeders from different substations. As a result of different cell losses and capacitors tolerance the cells DC bus voltage can deviate from their reference values. In the proposed scheme, by individually modifying the reference PWM signal for each cell, an effective balancing procedure is derived. The new balancing procedure needs only the line current sign and is independent of the main control strategy, which controls the total DC bus voltages of cascaded H-bridge. The effect of modulation index variation on the capacitor voltage is analytically derived for the proposed strategy. The proposed method takes advantages of phase shift carrier based modulation and can be applied for a cascaded H-bridge with any number of cells. Also the system is immune to loss of one cell and the presented procedure can keep balancing between the remaining cells. Simulation studies and experimental results validate the effectiveness of the proposed method in the balancing of DC bus voltages.

Leg-Balancing Control of the DC-link Voltage for Modular Multilevel Converters

  • Du, Sixing;Liu, Jinjun;Lin, Jiliang
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.739-747
    • /
    • 2012
  • This paper applies carrier phase shifted pulse-width modulation (CPS-PWM) to transformerless modular multilevel converters (MMC) to improve the output spectrum. Because the MMC topology is characterized by the double-star connection of six legs consisting of cascaded modular chopper cells with floating capacitors, the balance control of the DC-link capacitor voltage is essential for safe operation. This paper presents a leg-balancing control strategy to achieve DC-link voltage balance under all operating conditions. This strategy based on circulating current decoupling control focused on DC-link balancing between the upper and lower legs in each phase pair by considering the six legs as three independent phase-pairs. Experiments are implemented on a 100-V 3-kVA downscaled prototype. The experimental results show that the proposed leg-balancing control is both effective and practical.

A Simple Control Strategy for Balancing the DC-link Voltage of Neutral-Point-Clamped Inverter at Low Modulation Index

  • C.S. Ma;Kim, T.J.;D.W. Kang;D.S. Hyun
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.205-214
    • /
    • 2003
  • This paper proposes a simple control strategy based on the discontinuous PWM (DPWM) to balance the DC-link voltage of three-level neutral-point-clamped (NPC) inverter at low modulation index. It introduces new DPWM methods in multi-level inverter and one of them is used for balancing the DC-link voltage. The current flowing in the neutral point of the DC-link causes the fluctuation of the DC-link voltage of the NPC inverter. The proposed DPWM method changes the path and duration time of the neutral point current, which makes the overall fluctuation of the DC-link voltage zero during a sampling time of the reference voltage vector. Therefore, by using the proposed strategy, the voltage of the DC-link can be balanced fairly well and the voltage ripple of the DC-link is also reduced significantly. Moreover, comparing with conventional methods which have to perform the complicated calculation, the proposed strategy is very simple. The validity of the proposed DPWM method is verified by the experiment.

Coupled Inductor Based Voltage Balancing in Dual-Output CLL Resonant Converter for Bipolar DC Distribution System (양극성 DC 배전 시스템 적용을 위한 결합 인덕터 기반의 전압 밸런싱 이중 출력 CLL 공진형 컨버터)

  • Lee, Seunghoon;Kim, Jeonghun;Cha, Honnyong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.348-355
    • /
    • 2022
  • A bipolar DC distribution system suffers from an imbalance in voltages when asymmetric loads are connected at the outputs. Dedicated voltage balancers are required to address the imbalance in bipolar voltage levels. However, additional components eventually increase the cost and decrease the efficiency and power density of the system. Therefore, to deal with the imbalance in output voltages without adding any extra components, this study presents a coupled inductor-based voltage balancing technique with a dual-output CLL resonant converter. The proposed coupled inductor does not require extra magnetic components to balance the output voltages because it is the result of resonant inductors of the CLL tank circuit. It can also avoid complex control schemes applied to voltage balancing. Moreover, with the proposed coupled inductor, the CLL converter acquires good features including zero voltage and zero current switching. Detailed analysis of the proposed coupled inductor is presented with different load conditions. A 3.6-kW hardware prototype was built and tested to validate the performance of the proposed coupled inductor-based voltage balancing technique.

An Improved Voltage Control Scheme for DC-Link Voltage Balancing in a Four-Level Inverter (4-레벨 인버터의 DC-링크 전압 균형을 위한 향상된 전압 제어 기법)

  • Kim, Rae-Yeong;Lee, Yo-Han;Choe, Chang-Ho;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.10
    • /
    • pp.544-554
    • /
    • 1999
  • Multi-level inverters are now receiving widespread interest form the industrial drives for high power variable speed applications. Especially, for the high power variable speed applications, a diode clamped multi-level inverter has been widely used. However, it has the inherent problem that the voltage of the link capacitors fluctuates. This paper describes a voltage control scheme effectively to suppress the DC-link potential fluctuation for a diode clamped four-level inverter. The current to flow from/into the each link capacitor is analyzed and the operation limit is obtained when a conventional SVPWM is used. To overcome the operation limit, a modified carrier-based SVPWM is proposed. Various simulation and experiment results are presented to verify the proposed voltage control scheme for DC-link voltage balancing.

  • PDF

A Novel SVPWM Strategy Considering DC-link Balancing for a Multi-level Voltage Source Inverter

  • Kim, Rae-Young;Lee, Yo-Han;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.159-164
    • /
    • 1998
  • This paper proposes a SVPWM (space vector pulse width modulation) strategy for a multi-level voltage source inverter. This strategy is easily implemented as SPWM (sinusoidal pulse width modulation) and has the same DC-link voltage utilization as general SVPWM. The method to keep the voltage balancing of DC-link also is proposed by the analysis model of DC-link voltage fluctuation. The usefulness of the proposed SVPWM is verified through the simulation.

  • PDF

Active Voltage-balancing Control Methods for the Floating Capacitors and DC-link Capacitors of Five-level Active Neutral-Point-Clamped Converter

  • Li, Junjie;Jiang, Jianguo
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.653-663
    • /
    • 2017
  • Multilevel active neutral-point-clamped (ANPC) converter combines the advantages of three-level ANPC converter and multilevel flying capacitor (FC) converter. However, multilevel ANPC converter often suffers from capacitor voltage balancing problems. In order to solve the capacitor voltage balancing problems for five-level ANPC converter, phase-shifted pulse width modulation (PS-PWM) is used, which generally provides natural voltage balancing ability. However, the natural voltage balancing ability depends on the load conditions and converter parameters. In order to eliminate voltage deviations under steady-state and dynamic conditions, the active voltage-balancing control (AVBC) methods of floating capacitors and dc-link capacitors based on PS-PWM are proposed. First, the neutral-point current is regulated to balance the neutral-point voltage by injecting zero-sequence voltage. After that, the duty cycles of the redundant switch combinations are adjusted to balance the floating-capacitor voltages by introducing moderating variables for each of the phases. Finally, the effectiveness of the proposed AVBC methods is verified by experimental results.