• 제목/요약/키워드: DC leakage current

검색결과 242건 처리시간 0.037초

$Pr_{6}O_{11}$계 ZnO 바리스터의 전기적 안정성에 소결온도의 영향 (Effect of Sintering Temperature on Electrical Stability of $Pr_{6}O_{11}$-Based ZnO Varistors)

  • 남춘우;류정선
    • 한국전기전자재료학회논문지
    • /
    • 제14권8호
    • /
    • pp.640-646
    • /
    • 2001
  • The electrical stability for DC stress of Pr$_{6}$O$_{11}$-based ZnO varistos consisting of ZnO-Pr$_{6}$O$_{11}$-CoO-Cr$_2$O$_3$-Er$_2$O$_3$-based ceramics were investigated with sintering temperature in the range of 1325~1345$^{\circ}C$. A the sintering temperature is raised, the nonlinear exponent of varistors was decreased, whereas the stability was markedly improved. The density of ceramics was found to greatly affect the electrical stability for DC stress. The varistors sintered at 13$25^{\circ}C$ were completely degraded because of thermal runaway attributing to low density. The varistors sintered at 1335$^{\circ}C$ exhibited the highest nonlinearity, with a nonlinear exponent of 70.53 and a leakage current of 1.92$\mu$A, whereas they did not exhibit relatively high stability. On the contrary, the varistors sintered at >134$0^{\circ}C$ exhibited not only a high nonlinearity marking the nonlinear exponent above 50 and the leakage current below 3$\mu$A, but also a high stability marking the variation rate of the varistor voltage below 2%, even under DC stress such as (0.80V$_{1mA}$/9$0^{\circ}C$/12h)+(0.85V$_{1mA}$/115$^{\circ}C$/12h)+(0.90V$_{1mA}$/12$0^{\circ}C$/12h)+(0.95V$_{1mA}$/1$25^{\circ}C$/12h)+(0.95V$_{1mA}$/15$0^{\circ}C$/12h). In particular, ti was found that the varistors sintered at 134$0^{\circ}C$ were more nonlinear and more stable, compared with that of 1345$^{\circ}C$.EX>.}C$.EX>.

  • PDF

뇌임펄스전류에 의한 ZnO 피뢰기의 열화특성 (Degradation Properties of ZnO Surge Arresters Due to Lightning Impulse Currents)

  • 이수봉;이복희
    • 조명전기설비학회논문지
    • /
    • 제23권4호
    • /
    • pp.79-85
    • /
    • 2009
  • 이 논문은 피임펄스전류의 입사에 따른 ZnO 피뢰기의 열화 특성에 대하여 기술하였다. 뇌서지에 의한 ZnO 피뢰기의 열화특성을 분석하기 위해 시료 ZnO 피뢰기에 8/20[${\mu}s$], 2.5[kA]의 표준뇌임펄스전류를 인가하였다. 뇌임펄스전류를 인가한 것과 인가하지 않은 ZnO 피뢰기에 흐르는 상용주파수 AC 및 DC 누설전류를 측정하였다. 그 결과 임펄스전류의 인가횟수가 증가함에 따라 누설전류는 증가하였고 AC전압에서 누설전류의 비 대칭성은 뚜렷하게 나타났다. 뇌임펄스전류를 인가하지 않은 ZnO 피뢰기의 ZnO 입자는 균일한데 반해 뇌임펄스전류를 인가한 ZnO 피뢰기의 ZnO 입자는 불균일하게 변형되었다. 또한 뇌임펄스전류 인가에 따른 $Bi_2O_3$의 감소가 입계층의 결핍을 발생시키며 입계층의 결핍에 의한 전류의 집중이 ZnO 피뢰기 소자의 비선형 특성의 열화에 대한 중요한 요인으로 작용한 것으로 밝혀졌다.

도전손실 저감을 위한 새로운 소프트 스위칭 FB DC-DC 컨버터 (Novel soft switching FB DC-DC converter for reducing conduction losses)

  • 김은수;조기연;계문호;김윤호;윤병도
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.388-391
    • /
    • 1996
  • The conventional high frequency phase-shifted full bridge DC-DC converter has a disadavantage that a circulating current flows through transformer and switching devices during the freewheeling interval Due to this circulating current, RMS current stress, conduction losses of transformer and switching devices are increased. To alleviate this problem, this study provides a novel circulating current free type high frequency soft switching phase-shifted full bridge DC-DC converter which applies the energy recovery snubber(ERS) attached at the secondary side of transformer. The ERS adopted in this study is consisted of three fast recovery diode($Ds_1$, $Ds_2$, $Ds_3$), two resonant capacitor($Cs_1$, $Cs_2$) and a small resonant inductor [(Lr) : It can be ignored because the transformer leakage inductance(Ll) is able to use in stead of inserting the resonant inductor(Lr)]

  • PDF

Recessed-gate 4H-SiC MESFET의 DC특성에 관한 연구 (Study on DC Characteristics of 4H-SiC Recessed-Gate MESFETs)

  • 박승욱;황웅준;신무환
    • 한국재료학회지
    • /
    • 제13권1호
    • /
    • pp.11-17
    • /
    • 2003
  • DC characteristics of recessed gate 4H-SiC MESFET were investigated using the device/circuit simulation tool, PISCES. Results of theoretical calculation were compared with the experimental data for the extraction of modeling parameters which were implemented for the prediction of DC and gate leakage characteristics at high temperatures. The current-voltage analysis using a fixed mobility model revealed that the short channel effect is influenced by the defects in SiC. The incomplete ionization models are found out significant physical models for an accurate prediction of SiC device performance. Gate leakage is shown to increase with the device operation temperatures and to decrease with the Schottky barrier height of gate metal.

Analysis and Implementation of a DC-DC Converter with an Active Snubber

  • Lin, Bor-Ren;Lin, Li-An
    • Journal of Power Electronics
    • /
    • 제11권6호
    • /
    • pp.779-786
    • /
    • 2011
  • This paper presents a soft switching converter to achieve the functions of zero voltage switching (ZVS) turn-on for the power switches and dc voltage step-up. Two circuit modules are connected in parallel in order to achieve load current sharing and to reduce the size of the transformer core. An active snubber is connected between two transformers in order to absorb the energy stored in the leakage and magnetizing inductances and to limit the voltage stresses across the switches. During the commutation stage of the two complementary switches, the output capacitance of the two switches and the leakage inductance of the transformers are resonant. Thus, the power switches can be turned on under ZVS. No output filter inductor is used in the proposed converter and the voltage stresses of the output diodes is clamped to the output voltage. The circuit configuration, the operation principles and the design considerations are presented. Finally, laboratory experiments with a 340W prototype, verifying the effectiveness of the proposed converter, are described.

중첩전압(직류+교류 60Hz)에서 산화아연 피뢰기 소자의 누설전류 특성 (The characteristic of leakage current in ZnO surge arrestor elements with mixed direct and 60Hz voltage)

  • 이복희;박건영;강성만;최휘성;오성균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.186-188
    • /
    • 2003
  • The ZnO surge arrester is the protective device for limiting surge voltages on equipment by diverting surge current and returning the device to its original status. The occurrence of overvoltage appears in any phase to AC power supply system and it appears in mixing AC and impulse voltages, moreover because HVDC power supply system uses converter in semiconductor, it makes mixed DC and high harmonics voltages. In this study, the various mixed AC and DC voltages was made for investigating the degradation effect of ZnO arrester according to mixed voltage. As a result, the increase of DC component to mixed voltages causes the increase of resistive component of total leakage current to ZnO block. In changing V-I curve for mixed voltages, the cross-over point acts a factor as making the proper capacitor size of an equivalent circuit for ZnO block.

  • PDF

High Step-up Active-Clamp Converter with an Input Current Doubler and a Symmetrical Switched-Capacitor Circuit

  • He, Liangzong;Zeng, Tao;Li, Tong;Liao, Yuxian;Zhou, Wei
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.587-601
    • /
    • 2015
  • A high step-up dc-dc converter is proposed for photovoltaic power systems in this paper. The proposed converter consists of an input current doubler, a symmetrical switched-capacitor doubler and an active-clamp circuit. The input current doubler minimizes the input current ripple. The symmetrical switched-capacitor doubler is composed of two symmetrical quasi-resonant switched-capacitor circuits, which share the leakage inductance of the transformer as a resonant inductor. The rectifier diodes (switched-capacitor circuit) are turned off at the zero current switching (ZCS) condition, so that the reverse-recovery problem of the diodes is removed. In addition, the symmetrical structure results in an output voltage ripple reduction because the voltage ripples of the charge/pump capacitors cancel each other out. Meanwhile, the voltage stress of the rectifier diodes is clamped at half of the output voltage. In addition, the active-clamp circuit clamps the voltage surges of the switches and recycles the energy of the transformer leakage inductance. Furthermore, pulse-width modulation plus phase angle shift (PPAS) is employed to control the output voltage. The operation principle of the converter is analyzed and experimental results obtained from a 400W prototype are presented to validate the performance of the proposed converter.

Analysis of Generalized n-winding Coupled Inductor in dc-dc Converters

  • Kang, Taewon;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.88-89
    • /
    • 2017
  • This paper investigates the design of multi-winding coupled inductor for minimum inductor current ripple in rapid traction battery charger systems. Based on the general circuit model of multi-winding coupled inductor together with the operating principles of dc-dc converter, the relationship between the ripple size of inductor current and the coupling factor is derived under the different duty ratio. The optimal coupling factor which corresponds to a minimum inductor ripple current becomes -(1/n-1), i.e. a complete inverse coupling without leakage inductance, as the steady-state duty ratio operating point approaches 1/n, 2/n, … or (n1)/n. In an opposite manner, the optimal coupling factor value of zero, i.e. zero mutual inductance, is required when the steady-state duty ratio operating point approaches either zero or one.

  • PDF

Leakage Current Energy Harvesting Application in a Photovoltaic (PV) Panel Transformerless Inverter System

  • Khan, Md. Noman Habib;Khan, Sheroz
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권4호
    • /
    • pp.190-194
    • /
    • 2017
  • Present-day solar panels incorporate inverters as their core components. Switching devices driven by specialized power controllers are operated in a transformerless inverter topology. However, some challenges associated with this configuration include the absence of isolation, causing leakage currents to flow through various components toward ground. This inevitably causes power losses, often being also the primary reason for the power inverters' analog equipment failure. In this paper, various aspects of the leakage currents are studied using different circuit analysis methods. The primary objective is to convert the leakage current energy into a usable DC voltage source. The research is focused on harvesting the leakage currents for producing circa 1.1 V, derived from recently developed rectifier circuits, and driving a $200{\Omega}$ load with a power in the milliwatt range. Even though the output voltage level is low, the harvested power could be used for charging small batteries or capacitors, even driving light loads.

반응성 스퍼터링으로 제조한 MIS 소자용 AIN 절연박막의 전기전도 메커니즘 (Electrical Conduction Mechanism of AIN Insulator thin Film Fabricated by Reactive Sputtering Method for the Application of MIS Device)

  • 박정철;권정열;이헌용;추순남
    • 전기학회논문지
    • /
    • 제56권4호
    • /
    • pp.751-755
    • /
    • 2007
  • We have studied the variable conditions of reactive sputtering to prepare AM thin film. The leakage current showed below $10^{-9}A/cm^2$ at the deposition temperature of $250^{\circ}C\;and\;300^{\circ}C$ in the field of 0.1 MV/cm, and it was gradually increased and to be saturated in 0.2 MV/cm. The C-V characteristics of the above mentioned deposition temperature conditions showed a deep depletion phenomenon at inversion region. The C-V characteristics showed similarly under the DC power conditions of 100 and 150 W but were degraded at 200W. When the DC power was 100, 200, and 300 W the dielectric breakdown phenomenon was shown in 2.8, 3.2 and 5.2 MV/cm, respectively. It was found that AIN film was dominated by Poole-Frenkel conduction mechanism.