• Title/Summary/Keyword: DC bias current

Search Result 131, Processing Time 0.035 seconds

A Novel Compensator for Eliminating DC Magnetizing Current Bias in Hybrid Modulated Dual Active Bridge Converters

  • Yao, Yunpeng;Xu, Shen;Sun, Weifeng;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1650-1660
    • /
    • 2016
  • This paper proposes a compensator to eliminate the DC bias of inductor current. This method utilizes an average-current sensing technique to detect the DC bias of inductor current. A small signal model of the DC bias compensation loop is derived. It is shown that the DC bias has a one-pole relationship with the duty cycle of the left side leading lag. By considering the pole produced by the dual active bridge (DAB) converter and the pole produced by the average-current sensing module, a one-pole-one-zero digital compensation method is given. By using this method, the DC bias is eliminated, and the stability of the compensation loop is ensured. The performance of the proposed compensator is verified with a 1.2-kW DAB converter prototype.

DC Bias Current Influence to the Sensitivity of Orthogonal Fluxgate Sensor Fabricated with NiZn Ferrite Core (NiZn 페라이트코어를 이용하여 제작한 직교형 플럭스게이트 센서의 출력에 미치는 바이어스전류의 영향)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.3
    • /
    • pp.94-97
    • /
    • 2013
  • Orthogonal fluxgate sensor was fabricated with cylinder-shaped NiZn ferrite core, Cu wire through the core and pickup coil wound on the core, and the bias current effect on the output sensitivity of it was investigated. The output ($$\sim_\sim$$ sensitivity) of the sensor was largely dependent on the operation frequency, and the tendency of sensor output was similar to that of the impedance of pickup coil. The maximum output was obtained by adding the DC bias current of which value was over 50% of the excitation current. The output was saturated when the DC bias current was larger than 50% of the excitation current.

Direct Current (DC) Bias Stress Characteristics of a Bottom-Gate Thin-Film Transistor with an Amorphous/Microcrystalline Si Double Layer

  • Jeong, Tae-Hoon;Kim, Si-Joon;Kim, Hyun-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.5
    • /
    • pp.197-199
    • /
    • 2011
  • In this paper, the bottom-gate thin-film transistors (TFTs) were fabricated with an amorphous/microcrystalline Si double layer (DL) as an active layer and the variations of the electrical characteristics were investigated according to the DC bias stresses. Since the fabrication process of DL TFTs was identical to that of the conventional amorphous Si (a-Si) TFTs, it creates no additional manufacturing cost. Moreover, the amorphous/microcrystalline Si DL could possibly improve stability and mass production efficiency. Although the field effect mobility of the typical DL TFTs is similar to that of a-Si TFTs, the DL TFTs had a higher reliability with respect to the direct current (DC) bias stresses.

DC Current sensor using the saturable magnetic cores (자성체포화를 이용한 DC전류센서)

  • Park, Y.T.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.699-702
    • /
    • 2002
  • A DC current sensor is disclosed in which two pairs of saturable cores are provided so as enclose a conductor carrying a direct current to be measured. On each of the saturable cores, a bias winding, a feedback winding and an output winding are wound. Circuit for detection of an asymmetry in the magnetization current, generated by a reference alternating voltage, in a signal-conditioner. The reference alternating voltage is fed to the respective series circuits such that no resultant induction current is induced in the modulating current. The voltages over the resistor form input signals for two peak value detectors, the strength of the output signal of which represents the degree of asymmetry of magnetization current. This paper describes the development a DC current sensor and its signal-conditioner.

  • PDF

Loss Calculation of a High Power DC-DC Converter Considering DC Bias Characteristic of Inductor (인덕터의 DC 바이어스 특성을 고려한 대용량 DC-DC 컨버터의 손실계산)

  • Jo, Young-Chang;Choi, Ju-Yeop;Jung, Seung-Ki;Choy, Ick;Song, Seung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.4
    • /
    • pp.789-795
    • /
    • 2011
  • It is necessary to accurately predict converter losses for optimized design of a high-power DC-DC converter. The losses of switching devices and inductor among the elements of the converter take significantly greater proportion. The current ripple will be determined by the size of the inductance and this inductance value varies depending on the DC amount of inductor current. As the inductance changes according to load current, the change influences not only the inductor loss itself but also the total converter loss. In this paper, for more accurate design of a bi-directional DC-DC converter for 30kW-class energy storage system, more accurate computational model is proposed considering inductance variation according to the load current change. The inductance changes using variable magnetic cores are verified and converter efficiency is tested through simulations and experiments.

Electroluminescent Characteristics of Fluorescent OLED with Alternating Current Forward Bias (교류 순방향 바이어스에 따른 형광 OLED의 전계 발광 특성)

  • Seo, Jung-Hyun;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.398-404
    • /
    • 2017
  • In order to study the AC driving mechanism for OLED lighting, the fluorescent OLEDs were fabricated and the electroluminescent characteristics of the OLEDs by AC forward bias were analyzed. In the case of the driving method of OLED by AC forward bias under the same voltage and the same current density, degradation of luminescent characteristics for elapsed time progressed faster than in the case of the driving method by DC bias. These phenomena were caused by the peak voltage of AC forward bias which is ${\sqrt{2}}$ times higher than the DC voltage. In addition, the degradation of the OLED was accelerated because the AC forward bias had come close to the upper limit of the allowable voltage range even though the peak voltage didn't exceed the allowable range of the OLED. However, the fabricated fluorescent OLED showed little degradation of OLED characteristics due to AC forward bias from 0 V to 6.04 V. Therefore, OLED lighting by AC driving will become commercialized if sufficient luminance is realized at a voltage at which the characteristics of the OLED are not degradation by the AC driving method.

A Study on the Color Granite Fabrication by Bias Enhancement Method (바이어스 인가 방식에 의한 컬러 화강석 제조에 관한 연구)

  • Park, Jong Kug;Shin, Hong-Jik;Choi, Won Seok;Han, Jae Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.247-249
    • /
    • 2016
  • In this study, we investigated the color change of the normal light gray granite as the high value color granite. By coating the metal catalyst liquid on the surface of granite stone, the metal particles were penetrated into the granite and the color of granite was changed permanently through the annealing treatment. To increase penetration depth into the granite, we used DC (direct current) bias. Two kinds of bias were used such as DC bias and pulse DC bias. And the penetration time was changed as 30 and 60 min. In all cases, the color granite were successfully obtained. Regardless of the catalyst reaction time, the penetration depth was increased by using the bias treatment. We obtained a penetration depth of 21 mm with the DC pulse bias during 60 min.

The Study on the SPICE Model Parameter Extraction Method for the Schottky Diode Under DC Forward Bias (DC 순방향 바이어스 인가조건에서 Schottky 다이오드의 SPICE 모델 파라미터 추출 방법에 관한 연구)

  • Lee, Un-Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.439-444
    • /
    • 2016
  • The method for extracting the SPICE model parameter of Schottky diode under DC forward bias is proposed. A method for improving the accuracy of the SPICE model parameter at various temperatures is proposed. Three analysis steps according to the magnitude of the current is used in order to extract the parameters effectively. At each analysis step, initial parameters are calculated by using the current-voltage equations and the Levenberg-Marquardt analysis is proceeded. To verify the validity of the proposed method, the SPICE model parameters for the BAT45 and FSV1045 under DC forward bias is extracted. Schottky diode currents obtained from the proposed method shows the average relative error of 6.1% and 9% compared with the measured data for the BAT45 and FSV1045 sample at various temperatures.

Pumping-up Current Characteristics of Linear Type Magnetic Flux Pump

  • Chung, Yoondo;Muta, Itsuya;Hoshino, Tsutomu;Nakamura, Taketsune;Ko, Taekuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.2
    • /
    • pp.29-34
    • /
    • 2004
  • The linear type flux pump aims to compensate a little bit decremental persistent current of the HTS magnet in NMR and MRI spectrometers. The flux pump mainly consists of DC bias coil, 3-phase AC coil and Nb foil. The persistent current in closed superconductive circuit can be easily adjusted by the 3-phase AC current, its frequency and the DC bias current. In the experiment, it has been investigated that the flux pump can effectively charge the current in the load coil of 543 mH for various frequencies in 18 minutes under the DC bias of 10 A and the AC of 5 $A_{rms}$. The maximum magnitudes of pumping current and load magnet voltage are 0.72 A/min and 20 ㎷, respectively. Based on simulation results by the FEM are proved to nearly agree with experimental ones.

Control the growth direction of carbon nanofibers under direct current bias voltage applied microwave plasma enhanced chemical vapor deposition system

  • Kim Sung-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.5
    • /
    • pp.198-201
    • /
    • 2005
  • Carbon nanofibers were formed on silicon substrate which was applied by negative direct current (DC) bias voltage using microwave plasma-enhanced chemical vapor deposition method. Formation of carbon nanofibers were varied according to the variation of the applied bias voltage. At -250 V, we found that the growth direction of carbon nanofibers followed the applied direction of the bias voltage. Based on these results, we suggest one of the possible techniques to control the growth direction of the carbon nanofibers.