• Title/Summary/Keyword: D-efficiency

Search Result 6,882, Processing Time 0.033 seconds

Spectral Efficiency 0f Symmetric Balance Incomplete Block Design Codes (Symmetric Balance Incomplete Block Design Code의 Spectral Efficiency)

  • Jhee, Yoon Kyoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.117-123
    • /
    • 2013
  • By calculating the spectral efficiency of symmetric balance incomplete block design(BIBD) codes satisfying BER=$10^{-9}$, it can be found that ideal BIBD code design with m=2 and various q's is effective when effective power is high($P_{sr}=-10$ dBm). But BIBD code design with q > 2 and various m's can be effective when effective power is low($P_{sr}=-25$ dBm).

High Efficiency GaN HEMT Power Amplifier Using Harmonic Matching Technique (고조파 정합 기법을 이용한 고효율 GaN HEMT 전력 증폭기)

  • Jin, Tae-Hoon;Kwon, Tae-Yeop;Jeong, Jinho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2014
  • In this paper, we present the design, fabrication and measurement of high efficiency GaN HEMT power amplifier using harmonic matching technique. In order to achieve high efficiency, harmonic load-pull simulation is performed, that is, the optimum load impedances are determined at $2^{nd}$ and $3^{rd}$ harmonic frequencies as well as at the fundamental. Then, the output matching circuit is designed based on harmonic load-pull simulation. The measurement of the fabricated power amplifier shows the linear gain of 20 dB and $P_{1dB}$(1 dB gain compression point) of 33.7 dBm at 1.85 GHz. The maximum power added efficiency(PAE) of 80.9 % is achieved at the output power of 38.6 dBm, which belongs to best efficiency performance among the reported high efficiency power amplifiers. For W-CDMA input signal, the power amplifier shows a PAE of 27.8 % at the average output power of 28.4 dBm, where an ACLR (Adjacent Channel Leakage Ratio) is measured to be -38.8 dBc. Digital predistortion using polynomial fitting was implemented to linearize the power amplifiers, which allowed about 6.2 dB improvement of an ACLR performance.

R&D Strategy Development for Nanotechnology Areas based on Efficiency Comparisons (효율성 비교를 통한 나노기술 분야별 R&D 전략 수립)

  • Bae, Seoung-Hun;Kim, Jun-Hyun;Jung, Yeon-Ju;Kang, Sang-Kyu;Kim, Jae-Sin;Kim, Heung-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.31-40
    • /
    • 2017
  • In this paper, we compared the efficiencies of national R&D investments between NT (Nanotechnology) areas in terms of papers, patents, and commercializations, and found ways to improve the efficiencies of national R&D investments for each NT area. This is in response to huge R&D investments government has made recently in NT areas. Here, we collected data on investments, papers, patents, and commercializations for the R&D projects in NT areas through National Science & Technology Information Service. Based on the data, we analyzed the investment and performances (papers, patents, and commercializations) for each NT area, calculated the efficiency for each NT area, and compared the efficiencies between NT areas. Next, using cluster analysis, we identified several NT areas with similar characteristics in terms of paper efficiency, patent efficiency and commercialization efficiency. Finally, we derived implications for the efficiency enhancement for each grouping. The cluster analysis showed that there could be two groups, one being low in terms of technological outcome (papers and patents) efficiencies and high in terms of commercialization efficiencies, while the other being high in terms of technological outcome (papers and patents) efficiencies and low in terms of commercialization efficiencies. Therefore, the strategy for one group calls for support for technology transfer or technology introduction from other R&D performers and grant of guidance for improving R&D performers' commercialization ability to other R&D performers while the strategy for the other group calls for R&D support for transfer of technology to other R&D performers, activation of technology transfer and support for commercialization of R&D performers.

Ku-Band Three-Stack CMOS Power Amplifier to Enhance Output Power and Efficiency (출력 전력 및 효율 개선을 위한 3-스택 구조의 Ku 대역 CMOS 전력 증폭기)

  • Yang, Junhyuk;Jang, Seonhye;Jung, Hayeon;Joo, Taehwan;Park, Changkun
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.133-138
    • /
    • 2021
  • We propose a Ku-band three-stack CMOS power amplifier to enhance the output power and efficiency. To minimize the dc power consumption, the driver stage is designed using common-source structure. To obtain high output power and utilize a voltage combining method, the power stage is designed using stack structure. To verify the proposed power amplifier structure, we design a Ku-band power amplifier using 65-nm RFCMOS process which provide nine metal layers. The P1dB, power-added efficiency, and gain are higher than 20 dBm, 23 dB, and 25%, respectively, while the operating frequency is 14 GHz-16 GHz.

A Study on Effect of Domain-Decomposition Method on Parallel Efficiency in 2-D Flow Computations (2차원 유동장 해석에서 영역분할법에 따른 병렬효율성 검토)

  • Lee Sangyeul;Hur Nahmkeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.147-152
    • /
    • 1998
  • 2-D flow fields are studied by using a shared memory parallel computer with a parallel flow analysis program which uses domain decomposition method and MPI library for data exchange at overlapped interface. Especially, effects of directional domain decomposition on parallel efficiency are studied for 2-D Lid-Driven cavity flow and flow through square cavity. It is known from the present study that domain decomposition along the main flow direction gives better parallel efficiency in 1-D partitioning than along the other direction. 2-D partitioning, however, is less sensitive to flow directions and gives good parallel efficiency for most of the cases considered.

  • PDF

On-chip Smart Functions for Efficiency Enhancement of MMIC Power Amplifiers for W-CDMA Handset Applications

  • Youn S. Noh;Kim, Ji H.;Kim, Joon H.;Kim, Song G.;Park, Chul S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.1
    • /
    • pp.47-54
    • /
    • 2003
  • New efficiency enhancement techniques have been devised and implemented to InGaP/GaAs HBT MMIC power amplifiers for W-CDMA mobile terminals applications. Two different types of bias current control circuits that select the efficient quiescent currents in accordance with the required output power levels are proposed for overall power efficiency improvement. A dual chain power amplifier with single matching network composed of two different parallel-connected power amplifier is also introduced. With these efficiency enhancement techniques, the implemented MMIC power amplifiers presents power added efficiency (PAE) more than 14.8 % and adjacent channel leakage ratio(ACLR) lower than -39 dBc at 20 dBm output power and PAE more than 39.4% and ACLR lower than -33 dBc at 28 dBm output power. The average power usage efficiency of the power amplifier is improved by a factor of more than 1.415 with the bias current control circuits and even up to a factor of 3 with the dual chain power amplifier.

An Analysis on the Determinants of Efficiency of the Pharmaceutical Firms using Stochastic Frontier Analysis (Stochastic Frontier Analysis를 이용한 제약회사의 효율성과 그 결정요인분석)

  • Sakong, Jin;Kim, Jeongkyu
    • Health Policy and Management
    • /
    • v.25 no.2
    • /
    • pp.97-106
    • /
    • 2015
  • Background & Methods: The purpose of this research is to estimate the efficiency of the pharmaceutical firms and the determinants of their efficiency. Stochastic frontier analysis(SFA) and panel study are applied to the data of 60 domestic pharmaceutical firms from 2006 to 2012. Results & Conclusion: First, the result of the stochastic frontier analysis shows that overall efficiency of the pharmaceutical firms is increasing as time goes by. However, if firms are classified by the scale, the larger firms show more efficiency and if classified by the degree of innovativeness, the innovative firms show more efficiency compared to the non-innovative firms. This evidences show that the scale and R&D investment have significant relationships with the efficiency of the pharmaceutical firms. Therefore, it is necessary to increase the national level of investment for the fundamental researches to vitalize R&D of the new drugs. Second, the result of estimation of the determinants of efficiency shows that the firms with larger sales promotion expenses and entertainment expenses have less efficiency compared to the other firms. This can be explained by the structural characteristics of the small generic pharmaceutical firms. Therefore, the government had better make the pharmaceutical firms to reduce sales promotion and entertainment expenses and increase R&D expenses by introducing systems such as global budgeting system on medicine or reference pricing system.

Performance Evaluation of Private R&D Projects using BSC/DEA (BSC/DEA를 활용한 기업 연구개발 프로젝트 성과평가)

  • Jeon, IkJin;Lee, Hakyeon
    • Korean Management Science Review
    • /
    • v.34 no.2
    • /
    • pp.67-83
    • /
    • 2017
  • This paper proposes a R&D project performance measurement model for private firms combining balanced scorecard (BSC) and data envelopment analysis (DEA). The efficiency of R&D projects is measured in terms of each of the three perspectives of BSC by using DEA : the internal process perspective (DEA-P), the customer perspective (DEA-C), and the financial perspective (DEA-F). The performance indicators of the three perspectives of BSC are considered as outputs of the corresponding DEA models. To provide strategic implications for R&D planning, we also propose the R&D project performance matrices composed of two different types of efficiency dimensions. The proposed model is expected to be fruitfully utilized for R&D performance measurement of private firms.

Analysis on Efficiency of Government's R&D investment in Renewable Energy (신재생에너지 분야 정부 R&D 투자 효율성 분석)

  • Baek, Chulwoo
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.42-50
    • /
    • 2014
  • Korean government has been investing more than 400 billion KRW in R&D on renewable energy. This paper aims to measure the R&D efficiency of national R&D program in the field of renewable energy, and to identify the sources of inefficiency. 4,213 R&D projects supported by Korean government during 2009-2011 are analyzed by using Data Envelopment Analysis and statistical tests. Results implies as follows. First, hydrogen, bio, fuel cell, photovoltaic have higher R&D efficiency than other renewable energies. Second, universities conducted national R&D program more efficiently than firms did, and small and medium sized enterprises are more efficient than large sized enterprises. Third, R&D inefficiency is mainly caused by the lacks of patent performance rather than excessive R&D investment or academic paper performance.

Resource Allocation and EE-SE Tradeoff for H-CRAN with NOMA-Based D2D Communications

  • Wang, Jingpu;Song, Xin;Dong, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1837-1860
    • /
    • 2020
  • We propose a general framework for studying resource allocation problem and the tradeoff between spectral efficiency (SE) and energy efficiency (EE) for downlink traffic in power domain-non-orthogonal multiple access (PD-NOMA) and device to device (D2D) based heterogeneous cloud radio access networks (H-CRANs) under imperfect channel state information (CSI). The aim is jointly optimize radio remote head (RRH) selection, spectrum allocation and power control, which is formulated as a multi-objective optimization (MOO) problem that can be solved with weighted Tchebycheff method. We propose a low-complexity algorithm to solve user association, spectrum allocation and power coordination separately. We first compute the CSI for RRHs. Then we study allocating the cell users (CUs) and D2D groups to different subchannels by constructing a bipartite graph and Hungrarian algorithm. To solve the power control and EE-SE tradeoff problems, we decompose the target function into two subproblems. Then, we utilize successive convex program approach to lower the computational complexity. Moreover, we use Lagrangian method and KKT conditions to find the global optimum with low complexity, and get a fast convergence by subgradient method. Numerical simulation results demonstrate that by using PD-NOMA technique and H-CRAN with D2D communications, the system gets good EE-SE tradeoff performance.