• Title/Summary/Keyword: D(X)

Search Result 6,323, Processing Time 0.036 seconds

Virtual Reality Using X3DOM (X3DOM을 이용한 가상현실)

  • Chheang, Vuthea;Ryu, Ga-Ae;Jeong, Sangkwon;Lee, Gookhwan;Yoo, Kwan-Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.165-170
    • /
    • 2017
  • Web 3D technology can be used to simulate the experiments of scientific, medical, engineering and multimedia visualization. On the web environment, 3D virtual reality can be accessed well without strictly on operating system, location and time. Virtual Reality (VR) is used to depict a three-dimensional, computer generated realistic images, sound and other sensations to replicated a real environment or an imaginary setting which can be explored and interacted with by a person. That person is immersed within virtual environment and is able to manipulate objects or perform a series of action. Virtual environment can be created with X3D which is the ISO standard for defining 3D interactive, web-based 3D content and integrating with multimedia. In this paper, we discuss about X3D VR stereo rendering scene and propose new X3D nodes for the HMD VR (head mounted display virtual reality). The proposed nodes are visualized by the web browser X3DOM of X3D.

UPPERS TO ZERO IN POLYNOMIAL RINGS WHICH ARE MAXIMAL IDEALS

  • Chang, Gyu Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.525-530
    • /
    • 2015
  • Let D be an integrally closed domain with quotient field K, X be an indeterminate over D, $f=a_0+a_1X+{\cdots}+a_nX^n{\in}D[X]$ be irreducible in K[X], and $Q_f=fK[X]{\cap}D[X]$. In this paper, we show that $Q_f$ is a maximal ideal of D[X] if and only if $(\frac{a_1}{a_0},{\cdots},\frac{a_n}{a_0}){\subseteq}P$ for all nonzero prime ideals P of D; in this case, $Q_f=\frac{1}{a_0}fD[X]$. As a corollary, we have that if D is a Krull domain, then D has infinitely many height-one prime ideals if and only if each maximal ideal of D[X] has height ${\geq}2$.

Design of an X3D to Java 3D translator (X3D - Java 3D 번역기의 설계)

  • Kim, Yun-Kee;Oh, Se-Man
    • Annual Conference of KIPS
    • /
    • 2000.04a
    • /
    • pp.145-148
    • /
    • 2000
  • 인터넷의 빠른 발전과 하드웨어 속도의 향상에 의해 가상현실이 점차 일반 사용자에게도 가깝게 다가서고 있다. 인터넷 가상현실 언어의 표준인 VRML이 XML의 개발과 발전에 의해 차기 버전을 XML의 장점인 용이한 확장성을 수용하는 X3D라 명명하고 표준화를 진행 중이다. VRML의 경우 전송 시 파일 크기의 문제를 안고 있고, X3D로 진보하면서 역시 같은 문제를 해결하기 위하여 보다 효율적인 전송 포맷에 대한 연구가 진행되고 있다. X3D의 효율적 전송을 위한 바이너리 스트림 개발의 일환으로 바이트코드를 제안하고, 강력한 Java 3D API와 플랫폼 독립적인 바이트코드의 장점을 살려 표준화 단계인 X3D를 별도의 브라우저 없이도 Java 애플릿을 이용하여 재생할 수 있도록 하고자 한다. 이를 위한 방법으로 X3D를 Java 3D로 변환하는 번역기가 필요하다. 따라서 본 논문에서는 X3D-Java 3D 번역기의 구조를 설계하고 구현 방법을 제시하고자 한다. XML 파서를 이용하여 X3D를 파싱하고 그의 출력인 AST를 순회하면서 Java 3D 파일을 생성한다. X3D DTD와 Java 3D 클래스의 구조, 계층 관계 정보를 독립된 자료로 작성하여 계속 변하게 될 두 언어의 변화에 유동적으로 대처하면서 소스 코드의 큰 변화 없이 이용할 수 있게 설계하고자 한다.

  • PDF

Kaplansky-type Theorems, II

  • Chang, Gyu-Whan;Kim, Hwan-Koo
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.3
    • /
    • pp.339-344
    • /
    • 2011
  • Let D be an integral domain with quotient field K, X be an indeterminate over D, and D[X] be the polynomial ring over D. A prime ideal Q of D[X] is called an upper to zero in D[X] if Q = fK[X] ${\cap}$ D[X] for some f ${\in}$ D[X]. In this paper, we study integral domains D such that every upper to zero in D[X] contains a prime element (resp., a primary element, a t-invertible primary ideal, an invertible primary ideal).

ON DERIVATIONS IN NONCOMMUTATIVE SEMIPRIME RINGS AND BANACH ALGEBRAS

  • PARK, KYOO-HONG
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.671-678
    • /
    • 2005
  • Let R be a noncommutative semi prime ring. Suppose that there exists a derivation d : R $\to$ R such that for all x $\in$ R, either [[d(x),x], d(x)] = 0 or $\langle$$\langle(x),\;x\rangle,\;d(x)\rangle$ = 0. In this case [d(x), x] is nilpotent for all x $\in$ R. We also apply the above results to a Banach algebra theory.

HAUSDORFF DIMENSION OF THE SET CONCERNING WITH BOREL-BERNSTEIN THEORY IN LÜROTH EXPANSIONS

  • Shen, Luming
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1301-1316
    • /
    • 2017
  • It is well known that every $x{\in}(0,1]$ can be expanded to an infinite $L{\ddot{u}}roth$ series with the form of $$x={\frac{1}{d_1(x)}}+{\cdots}+{\frac{1}{d_1(x)(d_1(x)-1){\cdots}d_{n-1}(x)(d_{n-1}(x)-1)d_n(x)}}+{{\cdots}}$$, where $d_n(x){\geq}2$ for all $n{\geq}1$. In this paper, the set of points with some restrictions on the digits in $L{\ddot{u}}roth$ series expansions are considered. Namely, the Hausdorff dimension of following the set $$F_{\phi}=\{x{\in}(0,1]\;:\;d_n(x){\geq}{\phi}(n),\;i.o.n}$$ is determined, where ${\phi}$ is an integer-valued function defined on ${\mathbb{N}}$, and ${\phi}(n){\rightarrow}{\infty}$ as $n{\rightarrow}{\infty}$.

LOCALLY DIVIDED DOMAINS OF THE FORM $D[X]_N_v$

  • Chang, Gyu Whan
    • Korean Journal of Mathematics
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • Let D be an integral domain, X be an indeterminate over D, and $N_v=\{f{\in}D[X]{\mid}(A_f)_v=D\}$. In this paper, we introduce the concept of t-locally divided domains, and we then prove that $D[X]_{N_v}$ is a locally divided domain if and only if D is a t-locally divided UMT-domain, if and only if D[X] is a t-locally divided domain.

A RESULT CONCERNING DERIVATIONS IN NONCOMMUTATIVE BANACH ALGERAS

  • Chang, Ick-Soon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.97-104
    • /
    • 1997
  • The purpose of this paper is to prove the following result: Let A be a noncommutative semisimple Banach algebra. Suppose that $D:A{\rightarrow}A$, $G:A{\rightarrow}A$ are linear derivations such that [G(x), x]D(x) = D(x)[G(x), x] = 0, [D(x), G(x)] = 0 hold for all $x{\in}A$. In this case either D = 0 or G = 0.

  • PDF

CONTINUOUS DERIVATIONS OF NONCOMMUTATIVE BANACH ALGEBRA

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.319-327
    • /
    • 2000
  • In this paper we investigate the conditions for derivations under which the Singer-Wermer theorem is true for noncommutative Banach algebra A such that either [[D(x),xD(x)] ${\in}$ rad(A) for all $x{\in}$A or $D(x)^2$x+xD(x))$^2$${\in}$rad(A) for all $x{\in}$A, where rad(A) is the Jacobson radical of A, then $D(A){\subseteq}$rad(A).