A RESULT CONCERNING DERIVATIONS IN NONCOMMUTATIVE BANACH ALGERAS

Ick-Soon Chang

Abstract. The purpose of this paper is to prove the following result: Let A be a noncommutative semisimple Banach algebra. Suppose that $D: A \rightarrow A, G: A \rightarrow A$ are linear derivations such that

$$
[G(x), x\rangle D(x)=D(x)[G(x), x]=0,[D(x), G(x)]=0
$$

hold for all $x \in A$. In this case either $D=0$ or $G=0$.

1. Introduction

Throughout this paper R will represent an associative ring with center $Z(R)$. We write $[x, y]=x y-y x$ and use the identities $[x y, z]=$ $[x, z] y+x[y, z],[x, y z]=[x, y] z+y[x, z]$. An additive mapping $D:$ $R \rightarrow R$ is called a derivation if $D(x y)=D(x) y+x D(y), x, y \in R$. A derivation D is inner if there exists $a \in R$ such that $D(x)=[a, x]$ holds for $x \in R$. Recall that R is prime if $a R b=(0)$ implies that either $a=0$ or $b=0$. B. E. Johnson and A. M. Sinclair [2] have proved that any linear derivation on a semisimple Banach algebra is continuous. A result of I. M. Singer and J. Wermer [5] states that any continuous linear derivation on a commutative Banach algebra maps the algebra into its radical. Combining these two results one obtains that there are no nonzero linear derivations on a commutative semisimple Banach algebra. In a very recent paper M. P. Thomas [6] has generalized the Singer-Wermer Theorem by proving that any

Received by the editors on June 30, 1997.
1991 Mathematics Subject Classifications: Primary 46H05, 46H20.
Key words and phrases: Derivation, Noncommutative Banach Algebra.
linear derivation on a commutative Banach algebra maps the algebra into its radical. Obviously, this result also implies that any linear derivation on a commutative semisimple Banach algebra is zero. Since all linear derivations on a commutative semisimple Banach algebras are zero, it seems natural to ask, under what additional assumptions a linear derivation on a noncommutative semisimple Banach algebra is zero. In Theorem 2.1 we give a partial answer to the above question.

2. Main Results

Theorem 2.1. Let A be a noncommutative semisimple Banach algebra. Suppose that $D: A \rightarrow A, G: A \rightarrow A$ are linear derivations such that

$$
[G(x), x] D(x)=D(x)[G(x), x]=0,[D(x), G(x)]=0
$$

hold for all $x \in A$. In this case either $D=0$ or $G=0$.
For the proof of Theorem 2.1 we shall need the following purely algebraic result which might be of some independent interest.

Theorem 2.2. Let R be a noncommutative prime ring of characteristic different from two and three. Suppose that $D: R \rightarrow R, G$: $R \rightarrow R$ are derivations such that

$$
[G(x), x] D(x)=D(x)[G(x), x]=0,[D(x), G(x)]=0
$$

hold for all $x \in R$. In this case either $D=0$ or $G=0$.
Proof. We intoduce a mapping $B: R \times R \rightarrow R$ by the relation

$$
\begin{equation*}
B(x, y)=[G(x), y]+[G(y), x], x, y \in R \tag{1}
\end{equation*}
$$

Obviously, the mapping $B(x, y)$ is symmetric (i.e., $B(x, y)=B(y, x)$ for all $x, y \in R$) and additive in both arguments. A routine calculation shows that the relation

$$
\begin{equation*}
B(x y, z)=B(x, z) y+x B(y, z)+G(x)[y, z]+[x, z] G(y) \tag{2}
\end{equation*}
$$

holds for all $x, y, z \in R$. We shall write $f(x)$ for $B(x, x)$. Then

$$
\begin{equation*}
f(x)=2[G(x), x], x \in R . \tag{3}
\end{equation*}
$$

The mapping f satisfies the relation

$$
\begin{equation*}
f(x+y)=f(x)+f(y)+2 B(x, y), x, y \in R . \tag{4}
\end{equation*}
$$

Throughout the paper we shall use the mapping B and f, as well as the relations (1),(2),(3) and (4) without specific reference. The assumption of Theorem 2.2 can now be written as follows

$$
\begin{equation*}
f(x) D(x)=0, x \in R \tag{5-a}
\end{equation*}
$$

and

$$
\begin{equation*}
D(x) f(x)=0, x \in R \tag{5-b}
\end{equation*}
$$

The linearization of (5-a) (i.e., substitution of $x+y$ instead of x) gives

$$
\begin{align*}
0= & (f(x)+f(y)+2 B(x, y))(D(x)+D(y)) \tag{6}\\
= & f(y) D(x)+2 B(x, y) D(x)+f(x) D(y) \\
& +2 B(x, y) D(y),
\end{align*}
$$

for all $x, y \in R$. Replacing x by $-x$ in (6), we obtain

$$
\begin{equation*}
f(x) D(y)+2 B(x, y) D(x)=0, x, y \in R . \tag{7}
\end{equation*}
$$

Replace y by $y G(x)$ in (7), then we have

$$
\begin{equation*}
[f(x), y] D(G(x))+2[y, x] G^{2}(x) D(x)=0, x, y \in R \tag{8}
\end{equation*}
$$

Replace y by $y z$ in (8), then we have by (8)
(9) $[f(x), y] z D(G(x))+2[y, x] z G^{2}(x) D(x)=0, x, y, z \in R$.

In particular for $y=f(x)$, we obtain

$$
\begin{equation*}
[f(x), x] z G^{2}(x) D(x)=0, x, z \in R . \tag{10}
\end{equation*}
$$

We intend to prove that

$$
\begin{equation*}
G^{2}(x) D(x)=0, x \in R \tag{11}
\end{equation*}
$$

Suppose on the contrary that $G^{2}(a) D(a) \neq 0$ for some $a \in R$. Then it follows from (10) that $[f(a), a]=0$ by primeness of R. Replace x by a and y by $a z$ in (7), then by (5-a) we have

$$
\begin{equation*}
f(a) z D(a)+G(a)[z, a] D(a)=0, z \in R \tag{12}
\end{equation*}
$$

Put $z=G(a) x$ in (12). Then

$$
\begin{aligned}
0 & =f(a) G(a) x D(a)+G(a)[G(a) x, a] D(a) \\
& =f(a) G(a) x D(a)+G(a)[G(a), a] x D(a)+G(a)^{2}[x, a] D(a)
\end{aligned}
$$

Hence

$$
\begin{equation*}
2 f(a) G(a) x D(a)+G(a) f(a) x D(a)+2 G(a)^{2}[x, a] D(a)=0 \tag{13}
\end{equation*}
$$

for all $x \in R$. On the other hand the left multiplication of the relation
(12) by $G(a)$ and letting $z=x$ give

$$
\begin{equation*}
G(a) f(a) x D(a)+G(a)^{2}[x, a] D(a)=0, x \in R \tag{14}
\end{equation*}
$$

From (13) and (14), we have

$$
\begin{equation*}
2 f(a) G(a)=G(a) f(a) \tag{15}
\end{equation*}
$$

since R is prime and $G^{2}(a) D(a) \neq 0$ implies $D(a) \neq 0$. In the same fashion starting from (5-b), we have

$$
\begin{equation*}
2 G(a) f(a)=f(a) G(a) \tag{16}
\end{equation*}
$$

From (15) and (16), we have

$$
f(a) G(a)=0, G(a) f(a)=0
$$

Let $x=a$ and $y=G(a)$ in (9). Then by primeness of $R, f(a)=0$. Thus for $x=a$ the relation (9) gives

$$
[y, a] z G^{2}(a) D(a)=0, y, z \in R,
$$

which implies $a \in Z(R)$. We have therefore proved that $G^{2}(x) D(x)=$ 0 in case $x \notin Z(R)$. It remains to prove that $G^{2}(x) D(x)=0$ also in the case when $x \in Z(R)$. Let therefore x be from $Z(R)$ and $y \notin Z(R)$. We have $x+y \notin Z(R)$. We know that

$$
G^{2}(y) D(y)=0, G^{2}(x+y) D(x+y)=0 .
$$

Then

$$
\begin{equation*}
G^{2}(x) D(x)+G^{2}(x) D(y)+G^{2}(y) D(x)=0 . \tag{17}
\end{equation*}
$$

Replace x by $-x$ in (17), then

$$
\begin{equation*}
G^{2}(x) D(x)-G^{2}(x) D(y)-G^{2}(y) D(x)=0 \tag{18}
\end{equation*}
$$

From (17) and (18) it follows that $G^{2}(x) D(x)=0$, which completes the proof of (11). By (11), $G^{2}(x+y) D(x+y)=0$ for all $x, y \in R$, hence

$$
\begin{equation*}
G^{2}(x) D(y)+G^{2}(y) D(x)=0, x, y \in R \tag{19}
\end{equation*}
$$

The substitution $y z$ of y in (19) gives

$$
G^{2}(y)[z, D(x)\}+\left[G^{2}(x), y\right] D(z)+2 G(y) G(z) D(x)=0
$$

for all $x, y, z \in R$. The substitution $z=G(x)$ in the above relation gives

$$
\begin{equation*}
\left[G^{2}(x), y\right] D(G(x))=0, x, y \in R \tag{20}
\end{equation*}
$$

Replace y by $y z$, then

$$
\begin{equation*}
\left[G^{2}(x), y\right] z D(G(x))=0, x, y, z \in R \tag{21}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left[G^{2}(x), x\right] z D(G(x))=0, x, z \in R \tag{22}
\end{equation*}
$$

Replacing x by $x+y$ in (22), we have

$$
\begin{align*}
& {\left[G^{2}(x), x\right] z D(G(y))+\left[G^{2}(x), y\right] z D(G(x))} \\
& +\left[G^{2}(x), y\right] z D(G(y))+\left[G^{2}(y), x\right] z D(G(x)) \tag{23}\\
& +\left[G^{2}(y), x\right] z D(G(y))+\left[G^{2}(y), y\right] z D(G(x))=0
\end{align*}
$$

for all $x, y, z \in R$. The substitution $-x$ for x in (23) gives

$$
\begin{align*}
& {\left[G^{2}(x), x\right] z D(G(y))+\left[G^{2}(x), y\right] z D(G(x))} \\
& -\left[G^{2}(x), y\right] z D(G(y))+\left[G^{2}(y), x\right] z D(G(x)) \tag{24}\\
& -\left[G^{2}(y), x\right] z D(G(y))-\left[G^{2}(y), y\right] z D(G(x))=0
\end{align*}
$$

for all $x, y, z \in R$. From (21), (23) and (24), we have

$$
\begin{equation*}
\left[G^{2}(x), x\right] z D(G(y))+\left[G^{2}(y), x\right] z D(G(x))=0, x, y, z \in R \tag{25}
\end{equation*}
$$

Put $z=z D(G(x)) t$ in (25). Then

$$
\left[G^{2}(x), x\right] z D(G(x)) t D(G(y))+\left[G^{2}(y), x\right] z D(G(x)) t D(G(x))=0
$$

for all $x, y, z, t \in R$. Hence by (22) we have

$$
\left[G^{2}(y), x\right] z D(G(x)) t D(G(x))=0, x, y, z, t \in R .
$$

By primeness of R, either $\left[G^{2}(y), x\right] z D(G(x))=0$ or $D(G(x))=0$. In both cases

$$
\left[G^{2}(y), x\right] z D(G(x))=0
$$

Hence by (25) we have

$$
\left[G^{2}(x), x\right] z D(G(y))=0, x, y, z \in R
$$

Since R is prime, either $\left[G^{2}(x), x\right]=0$ or $D(G(y))=0$. Assume that $\left[G^{2}(x), x\right]=0$ holds for all $x \in R$. Then we have $G=0$ as in the proof of $[1$, Theorem 1]. If $D(G(y))=0$ for all $y \in R$, then either $D=0$ or $G=0$ by Posner's Theorem [3, Theorem 1]. The proof is complete.

Theorem 2.1 is in the spirit of result of Vukman [7].
Proof of Theorem 2.1. By the result of B. E. Johnson and A. M. Sinclair [2] any linear derivation on a semisimple Banach algebra is continuous. Sinclair [3] has proved that any continuous linear derivation on a Banach algebra leaves the primitive ideals of the algebra invariant. Hence for any primitive ideal $P \subseteq A$ one can introduce linear derivations $D_{p}: A / P \rightarrow A / P, G_{p}: A / P \rightarrow A / P$, where A/P is a factor Banach algebra, by $D_{p}(\hat{x})=D(x)+P, G_{p}(\hat{x})=G(x)+P, \hat{x}=$ $x+P$. The assumption of Theorem 2.1

$$
[G(x), x] D(x)=D(x)[G(x), x]=0,[D(x), G(x)]=0, x \in A
$$

give

$$
\left[G_{p}(\hat{x}), \hat{x}\right] D_{p}(\hat{x})=D_{p}(\hat{x})\left[G_{p}(\hat{x}), \hat{x}\right]=0,\left[D_{p}(\hat{x}), G_{p}(\hat{x})\right]=0
$$

$\hat{x} \in A / P$. The factor algebra A / P is prime, since P is a primitive ideal. Hence, in case A / P is noncommutative, we have either $D_{p}=0$ or $G_{p}=0$, since all the assumptions of Theorem 2.2 are fulfilled. In case A / P is a commutative Banach algebra, one can conclude that $D_{p}=0$ and $G_{p}=0$ since A / P is semisimple and we know that there are no nonzero linear derivations on commutative semisimple Banach algebras. Since A is semisimple, it follows that $D=0$ or $G=0$. The proof of Theorem 2.1 is complete.

References

1. M. Brešar and J. Vukman, Derivations of noncommutative Banach algcbras, Arch. Math. 59 (1992), 363-370.
2. B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073.
3. E. Posner, Derivations in prime rings, Proc. Amer. Math. 8 (1957), 1093-1100.
4. A. M. Sinclair, Jordan homomorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209-214.
5. I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math Ann. 129 (1955), 260-264.
6. M. P. Thomas, The image of a derivation is contained in the radical, Annals of math. 128 (1988), 435-460.
7. J. Vukman, A result concerning derivations in noncommutative Banach algebras, Glas. Math. 26 (1991), 83-88.

Ick-Soon Chang
Department of Mathematics
Chungnam National University
Taejon 305-764, Korea
E-mail: ischang@sigma.chungnam.ac.kr

