• Title/Summary/Keyword: Cytochrome oxidase I gene

Search Result 131, Processing Time 0.036 seconds

Genomic Structure of the Luciferase Gene and Phylogenetic Analysis of the Firefly, Pyrocoelia rufa

  • Jianhong Li;Park, Yong-Soo;Zhao Feng;Kim, Iksoo;Lee, Sang-Mong;Kim, Jong-Gill;Kim, Keun-Young;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.181-189
    • /
    • 2003
  • We describe here the complete nucleotide sequence and the exon-intron structure of the luciferase gene of the firefly, Pyrocoelia rufa. The luciferase gene of the P. rufa firefly consisted of six introns and seven exons coding for 548 amino acid residues. From the translational start site to the end of last exon, however, the genomic DNA length of the P. rufa luciferase gene from the Korean and Chinese samples spans 1,968 bp and 1983 bp, respectively, and 3 amino acid residues were different to each other. Additionally, we also analyzed mitochondrial cytochrome oxidase I(COI) gene of the Chinese P. rufa fireflies. Analysis of DNA sequences from the mitochondrial COI protein-coding gene revealed 4 mitochondrial DNA sequence-based haplotypes with a maximum divergence of 0.7%. With the 20 P. rufa haplotypes found in Korea, phylogenetic analyses using PAUP and PHYLIP subdivided the P. rufa into three clades, termed clades A and B for the Korean sample, and clade C for the Chinese sample.

Effects of Mitochondrial DNA Polymorphism on Growth Traits of Hanwoo (mt DNA 다형이 한우 성장에 미치는 영향)

  • Jeon, G.J.;Chung, H.Y.;Choi, J.G.;Lee, M.S.;Chung, Y.H.;Lee, C.W.;Park, J.J.;Ha, J.M.;Lee, H.K.;Na, K.J.
    • Journal of Embryo Transfer
    • /
    • v.18 no.3
    • /
    • pp.227-235
    • /
    • 2003
  • 한우의 mt DNA cytochrome oxidase subunit I, II, 및 III complex지역의 유전적 다형현상을 제한효소를 이용하여 검출하였다. PCR primer 6종에 대하여 20가지 제한효소를 처리하였으며, Pst I, Pvu II, Rsa I, Eco RI, Bgl II, and Msp I 제한효소를 사용하여 유전적 변이를 검출하였다. 검출된 변이체와 한우의 성장과의 관련성을 조사한 결과 cytochrome oxidase subunit III complex 지역의 유전염기서열을 근거로 제작한 primer Mt9 좌위에서 제한효소 PvuII를 이용한 절단형과 체중형질 인 WT15(P<0.05) 및 WT18(P<0.01)에서 고도의 유의성이 관찰되었다. 아울러 , Mt9-Pvu II(P=0.07), Mt6-Bgl II(P=0.05), and Mt8-Rsa I(P=0.05) 좌위 또한 WT9, WTl5, and WT15에서 각각 통계적 유의성이 관찰되었다. 따라서 본 결과는 cytochrome oxidase subunit III complex segments가 candidate gene으로서 기초적 유전정 보 제공은 물론 유전적 개량을 위해 사용될 수 있을 것으로 사료된다.

Evolution of sea Urchin Strongylocentrotus intermedius Based on DNA Sequences of a Mitochondrial Gene, Cytochrome c Oxidase Subunit I (미토콘드리아 유전자, 치토그롬 옥시다제(subunit I)의 염기서열을 이용한 새치성게(Strongylocentrotus intermedius)의 진화과정 분석)

  • Lee, Youn-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.157-168
    • /
    • 2000
  • Sea urchin S. intermedius occurring in the Korean east coast is a cold water species that belongs to the family Strongylocentrotidae of Echinoidea. Although it is known that there are nine species in the family, species identification criteria, phylogenetic relationships, time and process of evolution of the family members have not been uncovered clearly. In the present study, I tried to find some clues to such problems for S. intermedius by means of DNA sequences. For this, cytochrome c oxidase subunit I (COI), one of the mitochondrial genes that evolve fast and follow maternal inheritance was analyzed. DNA was extracted from the female gonad of S. intermedius, a segment of COI gene amplified by polymerase chain reaction (PCR), and finally a total of 1077 base pair sequence of COI obtained by cloning and sequencing the PCR product. The sequence was compared with homologous genes of other sea urchins and echinoderm species. Phylogenetic trees of the COI gene segment revealed that S. intenedius is a sister species of S. purpuratus which lives along the east coast of the Paciflc. With reference to the fossil records of sea urchins and genetic distances in the molecular phylogenies, it is estimated that the two species were separated about 0.89 million years ago when the earth temperature fluctuated significantly. The current disjunct distribution patterns of the two species and the climate change of the earth at the time of separation suggest that speciation might have occurred by vicariance. The COI gene sequence obtained here now can be used as a molecular character which discerns S. intermedius from the other sea urchin species of Strongylocentrotidae.

  • PDF

Species Identification and Genetic Structure of Octopus minor from Korea and China on the Basis of Partial Sequences of Mitochondrial Cytochrome Oxidase I (미토콘드리아 Cytochrome Oxidase I 유전자 마커에 의한 한국.중국 낙지의 종판별 및 집단분석)

  • Kang, Jung-Ha;Yu, Ki-Hwan;Kim, Sang-Kyu;Park, Jung-Yeon;Kim, Bong-Seok;An, Chel-Min
    • The Korean Journal of Malacology
    • /
    • v.26 no.4
    • /
    • pp.285-290
    • /
    • 2010
  • The nucleotide sequences of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene of octopus groups collected from Muan, Taean, Yesu, Jeju in Korea and Youngsung, Daeryen in China were analyzed for the identification of species and populations. Six haplotypes were identified from the analyzed 60 individuals. All of the individuals (N = 10) from Jeju showed the A haplotype which was not observed from other groups, and could be classified as a distinct group. The analyzed groups could form two separate clade in MEGA4 analysis. The individuals from Muan, Taean, Yesu in Korea and Daeryen in China form a clase and the others from Jeju in Korea and Youngsung in China formed the other clade. The analysis of relationship among the groups showed the same results. Individuals belong to the group A (Muan, Taean, Yesu and Daeryen) showed closer relationship than individuals belong to the group B (Jeju and Youngsung). Although the CO1 universal primers used in this study was useful as a marker for species identification among Octopus, analysis of population was limited because of few variations in the partial sequences of CO1 analyzed in this study. However, it was possible to show the limited gene flow among the groups which is resulted from the spatial separation and differences in their habitats.

Two Corbicula (Corbiculidae: Bivalvia) mitochondrial lineages are widely distributed in Asian freshwater environment

  • Park, Joong-Ki;Kim, Won
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.377-377
    • /
    • 2003
  • We investigated the biogeography of Asian Corbicula using mitochondrial gene sequence variation for Corbicula members sampled from 24 localities of 8 Asian regions. A total of 210 individuals were genetically characterized by examining sequence variations of a 614 bp fragment of the mitochondrial cytochrome oxidase I (COI) gene. Phylogenetic analyses of the COI dataset revealed that Corbicula members are subdivided into two well-supported clades: estuarine and freshwater. (omitted)

  • PDF

Phylogenetic Study of Genus Haliotis in Korea by Cytochrome c Oxidase Subunit 1 and RAPD Analysis (Cytochrome c oxidase subunit 1과 RAPD 분석에 의한 한국 전복속의 계통 연구)

  • Seo, Yong Bae;Kang, Sung Chul;Choi, Seong Seok;Lee, Jong Kyu;Jeong, Tae Hyug;Lim, Han Kyu;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.406-413
    • /
    • 2016
  • Abalones are gastropod mollusks belonging to the genus Haliotis. Pacific abalones are regarded as a very important marine gastropod mollusk in Korea, Japan, China, and also in food industries around the world. In Korea, 6 species of abalone have been reported to occur along the coasts: Haliotis discus hannai, Haliotis discus discus, Haliotis madaka, Haliotis gigantea, Haliotis diversicolor supertexta, and Haliotis diversicolor diversicolor. This study was performed to discriminate the genetic variances by the partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI) genes and random amplified polymorphic DNA (RAPD) analysis against four species of Pacific abalone (H. discus hannai, H. discus, H. madaka, H. gigantea). COI gene is reasonably well conserved and has been sequenced in various invertebrate taxa. The RAPD analysis technique is a relatively simple and low cost method that allows differentiation of taxa without the need to know their genomes. In this study, we investigated the genetic diversity, phylogenetic relationships within each species. The COI and RAPD analysis were able to distinguish between H. gigantea and the other three species. However, these analysis methods were inadequate to distinguish between H. discus and H. madaka. These results are believed to be able to provide a basis data for future hybrid breeding research by defining the genetically closely related four species of abalone, which is to develop new hybrid abalone for export using hybrid breeding.

Genetic Distinctness of Sorex caecutiens hallamontanus (Soricomorpha: Mammalia) from Jeju Island in Korea: Cytochrome Oxidase I and Cytochrome b Sequence Analyses

  • Koh, Hung-Sun;Jang, Kyung-Hee;In, Seong-Teak;Han, Eui-Dong;Jo, Jae-Eun;Ham, Eui-Jeong;Jeong, Seon-Ki;Lee, Jong-Hyek;Kim, Kwang-Seon;Kweon, Gu-Hee
    • Animal Systematics, Evolution and Diversity
    • /
    • v.28 no.3
    • /
    • pp.215-219
    • /
    • 2012
  • To examine genetic divergences of two endemic Sorex caecutiens subspecies from Korea (S. c. hallamontanus in Korean Jeju Island and S. c. annexus in the mainland Korean Peninsula), we obtained partial cytochrome oxidase I (COI) sequences (429 bp) and complete cytochrome b sequences (1,140 bp) from the two Korean subspecies, and we compared these sequences to the corresponding sequences of S. caecutiens, obtained from GenBank. We found that Jeju S. c. hallamontanus is one of three clades within S. caecutiens, with an average Jukes-Cantor distance of 1.57% in the COI sequences and the distance of 2.07% and 11 fixed site differences in the cytochrome b sequences, indicating that Jeju S. c. hallamontanus is one endemic subspecies with concordant genetic distinctness, although further analyses with nuclear DNA sequences are necessary to confirm these findings. However, S. c. annexus from the mainland Korean Peninsula was not divergent from S. c. macropygmaeus from northeastern China and adjacent Russia, indicating that S. c. annexus from the mainland Korean Peninsula is another endemic subspecies with only morphological differences, although it is necessary to reexamine the subspecies status of S. c. annexus.

Identification of Four Cyst Nematodes using PCR-RFLP in Korea (PCR-RFLP를 이용한 국내 분포 씨스트선충 4종의 동정)

  • Ko, Hyoung-Rai;Kang, Heonil;Park, Eun-Hyoung;Kim, Eun-Hwa;Lee, Jae-Kook
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.3
    • /
    • pp.353-363
    • /
    • 2019
  • To identify four cyst nematodes (Heterodera schachtii, H. trifolii, H. glycines, H. sojae) that are economically important plant-parasitic nematodes in Korea, restriction fragment length polymorphism (RFLP) by 8 endonucleases (PstI, VspI, AlwI, RsaI, MvaI, EcoRI, Eco72I, Hinf I) was performed based on sequence difference of mitochondrial DNA cytochrome c oxidase subunit I (COI) gene. As a result, species-specific DNA band patterns by RsaI endonuclease were observed in H. schachtii. The specific patterns was in H. trifolii by 3 endonucleases (VspI, AlwI, Hinf I), and was in H. glycines by Hinf I. While, H. sojae was not digested by 4 endonuclease (VspI, AlwI, RsaI, Hinf I). This study showed that four cyst nematodes could be distinguished using RFLP by 4 endonucleases (RsaI, VspI, AlwI, Hinf I) based on the sequence difference of COI gene.

Molecular Identification and Development of a PCR Assay for the Detection of a Philometrid Nematode in Rockfish Sebastes schlegeli (조피볼락(Sebastes schlegeli) 선충(Nematode: Philometridae)에 대한 분자생물학적 동정 및 PCR 검출법 개발)

  • Seo, Han-Gill;Seo, Jung Soo;Ryu, Min Kyung;Lee, Eun Hye;Jung, Sung Hee;Han, Hyun-Ja
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.731-738
    • /
    • 2015
  • Nematode infection in the epithelial tissue of cultured rockfish Sebastes schlegeli was first reported in 2012. Since then, nematode infections have caused serious economic losses in rockfish aquaculture on the west coast of Korea. Taxonomic and life cycle information for this parasite are currently unknown. In this study, 18S rRNA and cytochrome c oxidase subunit I (COI) genes were used for molecular identification and polymerase chain reaction (PCR) to detect the invisible stages of this parasite. Nucleotide sequences of the 18S rRNA of the rockfish nematode showed 98% identity with that of Philometra morii. Therefore, this rockfish nematode was classified to the Philometridae family. However, we could not identify it to genus level using 18S rRNA. Its COI nucleotide sequences shared 85% and 82% identities with those of Bursaphelenchus sinensis and Philometra overstreeti, respectively. In addition, two gene-specific primer sets were designed based on the 18S rRNA gene to detect the intermediate host and nematode larvae. These primers were specific to this rockfish nematode without cross-reacting to other pathogens. The detection limit of the PCR assay using these primers was 1,000 copies of nematoda plasmid DNA. Therefore, the PCR assay described here is suitable for the detection of nematode DNA within rockfish. In addition, this PCR assay could be used to detect nematode larvae and the intermediate host.

A Mitochondiral Cytochrome Oxidase I gene based identification of Corbicula ssp. commercially available in South Korea (CO-I 유전자 기반 국내 유통 Corbicula 속 패류의 종 동정)

  • Park, So Young;Kang, Se Won;Hwang, Hee Ju;Chung, Jong Min;Song, Dae Kwon;Park, Hong Seog;Han, Yeon Soo;Lee, Jun-Sang;Kang, Jung-Ha;Lee, Yong Seok
    • The Korean Journal of Malacology
    • /
    • v.32 no.2
    • /
    • pp.127-131
    • /
    • 2016
  • The natives of the genus Corbicula have shown worldwide dispersion in recent times, which has caused great ecological and economic impacts on the introduced ecosystems. The species reported from the genus have been consumed as food and explored for medicine with pharmacological activity. Consequently, the demand of Corbicula sp. in the South Korean domestic market has increased and so also it's associated import to the country. However, due to the absence of identification keys of imported Corbicula, the market is facing confronting situations. We hypothesized that the mitochondrial Cytochrome Oxidase I gene (CO-I) based molecular profiling could be a necessary technique for identification of Corbicula sp. in the South Korea domestic market. The genetic analysis identified both Corbicula japonica and Corbicula fluminea from the market foods. C. japonica and C. fluminea are inhabitants in Korea, but C. fluminea production has decreased in Seomjingang river basin. Therefore, C. fluminea identified from this study, is expected to be imported from China and would have a mixed sales in Seomjingang river side basin.