• Title/Summary/Keyword: Cyclooxygenase-2 저해

Search Result 106, Processing Time 0.027 seconds

Study on Anti-oxidant and Anti-inflammatory Activity of Eggplant-cheongyeolsodokum (가지-청열소독음(淸熱消毒飮)의 항산화 및 항염 효능에 관한 연구)

  • Yoon, Jong-Moon;Kim, Dong-In;Lee, Ji-Hae;Han, So-Jung;Kim, Ha-Eun;Kim, Hyeon-Jeong;Nam, Kyu-Woo;Park, Ji-Yeon;Chi, Gyeong-Yup;An, Bong-Jeun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.2
    • /
    • pp.125-135
    • /
    • 2017
  • The purpose of this study is verification of the anti-oxidant effect and anti-inflammatory effect of Eggplant-cheongyeolsodokum composed of 8 herbs (Solanum melongena L., Lonicera japonica Thunb., Glycyrrhiza uralensis Fisch., Ligusticum chuanxiong Hort., Angelica gigas Nakai., Coptis deltoidea C. Y. Cheng et Hsiao., Gardenia jasminoides J. Ellis., Forsythia suspensa Vahl) to confirm the possibilities as useful cosmetic material. We used the modified prescription of 'cheongyeolsodokum' contained in Korean traditional medical book 'Donguibogam' as composition of Eggplant-cheongyeolsodokum and their proportions. Eggplant-cheongyeolsodokum were extracted with hot water, 70% ethanol and then powdered. To confirm anti-oxidant effect, we investigated radical scavenging ability (DPPH, $ABTS^+$, superoxide), superoxide dismutase (SOD)-like activity, total polyphenolic contents. Also to confirm anti-inflammatory effect, we investigated inhibition effect of nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages, and Inhibition effect of the expression of inflammatory-related proteins (iNOS, COX-2) by western blot analysis. As a result, Eggplant-cheongyeolsodokum showed good anti-oxidant and anti-inflammation effects, we suggest that it can be used as an active ingredient for cosmetics.

The Effect of Haptoglobin on Expression of Inflammatory Cytokines in 3T3-L1 Preadipocytes. (3T3-L1 지방전구세포에서 합토글로빈에 의한 염증성 cytokine 발현 조절)

  • Cho, Jin-Kyung;Kim, Nam-Hoon;Oh, Mi-Kyung;Park, Seon-Joo;Kim, In-Sook
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.537-541
    • /
    • 2008
  • White adipose tissue is now recognized as an important endocrine organ which secretes various signal factors and proteins termed 'adipokine'. Haptoglobin (Hp), which has been known as an acute phase protein, belongs to the adipokine. However, the function of Hp in adipose tissue remains unclear. To verify the role of Hp in preadipocytes, in this study, 3T3-L1 preadipocyte cells were stably transfected with human Hp gene and Hp-overexpressing cells were made. The Hp had no effect on cell growth of preadipocytes. By RT-PCR and Western blot analysis, the Hp inhibited gene expression of IL-6 and COX-2 and enhanced HO-1 synthesis in preadipocytes. Moreover, invasion assay showed the Hp suppressed migration of monocytes to preadipocytes. These findings suggest that the Hp may inhibit an inflammatory reaction in adipose tissue by regulating the expressions of pro-inflammatory and anti-inflammatory mediators, and by repressing monocytes/macrophages infiltration.

Anti-inflammatory Effects of Rumohra adiantiformis Extracts Fermented with Bovista plumbea Mycelium in LPS-stimulated RAW 264.7 Cells (LPS로 자극된 RAW 264.7 세포에서 찹쌀떡버섯 균사체로 생물전환된 루모라고사리 추출물의 항염증 효과)

  • Ji-Hye Hong;Eun-Seo Jang;Myung-Chul Gil;Gye Won Lee;Young Ho Cho
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.471-480
    • /
    • 2023
  • This study was designed to evaluate the anti-inflammatory effects of Rumohra adiantiformis extracts fermented with Bovista plumbea mycelium (B-RAE) in LPS-stimulated RAW 264.7 cells. The total polyphenol and total flavonoid content of B-RAE were 379.26±7.77 mg/g and 50.85±3.08 mg/g, respectively. The results of measuring the antioxidant activity of B-RAE showed that it scavenges 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and superoxide anion radical in a dose-dependent manner. B-RAE inhibited nitric oxide (NO) production in a dose-dependent manner without affecting cell viability. The gene expression of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-lβ (IL-1β), and IL-6 was measured using real time quantitative reverse transcription PCR (qRT-PCR). We found that, compared to the LPS-treated group, B-RAE significantly reduced the mRNA levels of the pro-inflammatory cytokines in a concentration-dependent manner. The expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), the phosphorylation of transcription factors such as nuclear factor-κB (NF-κB), and the mitogen-activated protein kinase (MAPK) signaling pathway proteins were assessed using Western blot analysis. We found that B-RAE significantly suppressed the expression of iNOS and COX-2, but their expression was increased by LPS treatment. In addition, the phosphorylation of NF-κB and IκB, which was increased by LPS treatment, was reduced with B-RAE treatment. The effect of B-RAE on the phosphorylation of the MAPK signaling pathway proteins was measured, and the phosphorylation of extracellular signal-regulated kinase (ERK) and the p38 MAPK proteins decreased in a dose-dependent manner, while the phosphorylation of c-Jun N-terminal kinase (JNK) increased. These anti-inflammatory effects of B-RAE may thus have been achieved through the high antioxidant activity, the inhibition of NO production through the suppression of iNOS and COX-2 expression, the inhibition of the NF-κB pathway, and the suppression of pro-inflammatory cytokine expression.

Anti-Inflammatory Effects of Extracts from Ligustrum ovalifolium H. Leaves on RAW264.7 Macrophages (RAW264.7 대식세포에서 왕쥐똥나무잎 추출물의 항염증 효과)

  • Kim, Yon-Suk;Lee, Seung-Jae;Hwang, Jin-Woo;Kim, Ee-Hwa;Park, Pyo-Jam;Jeong, Jae-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1205-1210
    • /
    • 2012
  • This study investigated the anti-inflammatory effects of Ligustrum ovalifolium H. (LOH) leaf extracts on RAW264.7 macrophages. Cell toxicity was determined by MTT assay. We evaluated the anti-inflammatory effects of LOH extracts by measuring nitric oxide (NO), reactive oxygen species (ROS), inducible NOS (iNOS) production, and cyclooxygenase-2 (COX-2) expression by Western blotting. LOH ethanolic extracts (0.05, 0.1, and 0.2 mg/mL) significantly suppressed LPS-stimulated production of NO. The intracellular ROS level also significantly decreased. LOH ethanolic extracts reduced the expression of iNOS and COX-2 proteins. The present results show that LOH ethanol extract has potent anti-inflammatory effects on RAW264.7 macrophages. These results also suggest that the anti-inflammatory effects of LOH extracts may be related to the inhibition of LPS-stimulated ROS and NO production. Therefore, ethanolic extracts of LOH leaves may be utilized as a good source of functional foods for protection against inflammatory diseases.

Anti-Inflammmatiry Effects of Nerium indicum Ethanol Extracts through Suppression of NF-kappaB Activation (NF-κB 활성 저해를 통한 협죽도 에탄올 추출물의 항염증 효능)

  • Kim, Tae-Hwan;Ko, Seog-Soon;Park, Cheol;Park, Sang-Eun;Hong, Sang-Hoon;Kim, Byung-Woo;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1221-1229
    • /
    • 2010
  • Nerium indicum, an India-Pakistan-originated shrub belonging to the oleander family, is reported to possess many pharmacological activities including cardiac muscle stimulation, and anti-diabetes, anti-angiogenesis, anti-cancer and neuro-protective activities. However, the anti-inflammatory properties of N. indicum were unclear. In this study, we investigated the effects of ethanol extract of the N. indicum leaf and stem (ENIL and ENIS) on the expression of anti-inflammatory mediators in U937 human pre-monocytic cell models. In U937 cells stimulated with phorbol 12-myristate-13-acetate (PMA), pre-treatment with ENIS significantly inhibited the expression of both cyclooxygenase-2 (COX-2) mRNA and protein, which are associated with inhibition of the release of prostaglandin $E_2\;(PGE_2)$, whereas the inhibitory effects appeared weakly in ENIL. Moreover, ENIS significantly attenuated PMA-induced IkappaB ($I{\kappa}B$) degradation and suppressed elevated nuclear factor kappa B (NF-${\kappa}B$) nuclear translocation. Taken together, these findings provide important new insights that N. indicum exhibits anti-inflammatory properties by suppressing the transcription of pro-inflammatory cytokine genes through the NF-kB signaling pathway.

Antioxidant capacity and Raw 264.7 macrophage anti-inflammatory effect of the Tenebrio Molitor (갈색거저리(Tenebrio Molitor)의 항산화능과 Raw 264.7 대식세포의 항염증 효과)

  • Yu, Jae-Myo;Jang, Jae-Yoon;Kim, Hyeon-Jeong;Cho, Yong-Hun;Kim, Dong-in;Kwon, O-jun;Cho, Yeong-Je;An, Bong-Jeun
    • Food Science and Preservation
    • /
    • v.23 no.6
    • /
    • pp.890-898
    • /
    • 2016
  • The purpose of this paper is to investigate potential anti-inflammatory and anti-oxidant effects of Tenebrio molitor. Macrophage cell response by outside stimulation leads expression of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin-6 (IL-6), $interleukin-1{\beta}$ ($IL-1{\beta}$), and trigger expression of genes which are affected by inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), resulting in formation of inflammatory factors like nitric oxide (NO) and Prostaglandin $E_2$ (PGE2). Cell viability was determined by MTT assay. In order to investigate anti-inflammatory agents, the inhibitory effects on the production of lipopolysaccharide (LPS)-induced NO in RAW 264.7 cells were examined. T. Molitor significantly decreased the production of NO in a dose-dependent manner, and also reduced the expression of iNOS, a COX-2 protein. As a result, the levels of protein such as $PGE_2$, iNOS, COX-2 and MARKs were significantly reduced compared to non-treated group in T. Molitor water extract (TDW) treated group. Also, antioxidant effect of T. Molitor were investigated using DPPH, ABTS+ and superoxide anion radical scavenging activity tests in cell-free system. Antioxidant activity of T. molitor was found low in the DPPH radical scavenging test while high in the ABTS+ and superoxide anion radical scavenging activity tests. These results show that TDW could be an effective anti-pro-inflammatory and anti-oxidant agent.

Inhibitory Effects of Asparagus cochinchinensis in LPS-Stimulated BV-2 Microglial Cells through Regulation of Neuroinflammatory Mediators, the MAP Kinase Pathway, and the Cell Cycle (Lipopolysaccharide로 자극된 BV-2 미세교세포에서 신경염증 매개체, MAP kinase경로, 세포주기의 조절에 의한 천문동(Asparagus cochinchinensis)의 저해효과)

  • Lee, Hyun Ah;Kim, Ji Eun;Choi, Jun Young;Sung, Ji Eun;Youn, Woo Bin;Son, Hong Joo;Lee, Hee Seob;Kang, Hyun-Gu;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.30 no.4
    • /
    • pp.331-342
    • /
    • 2020
  • The suppression of neuroinflammatory responses in microglial cells can be considered a key target for improving the progression of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). Asparagus cochinchinensis has traditionally been used as a medicine to treat fever, cough, kidney disease, breast cancer, inflammatory diseases, and brain diseases. In this study, we investigated the neuroprotective mechanism of an aqueous extract from A. cochinchinensis root (AEAC), particularly its anti-inflammatory effects on lipopolysaccharide (LPS)-activated BV-2 microglial cells. BV-2 cells were treated with four different concentrations of AEAC. No significant toxicity was detected in BV-2 cells treated with AEAC. Nitric oxide (NO), cyclooxygenase-2 (COX-2) mRNA, and inducible nitric oxide synthase (iNOS) mRNA levels were 21% lower in the AEAC+LPS group than in the Vehicle+LPS group. Lower proinflammatory (TNF-α and IL-1β) and anti-inflammatory cytokine (IL-6 and IL-10) levels were also detected in the AEAC+LPS group than in the Vehicle+LPS group, albeit at varying rates. Moreover, the phosphorylation of mitogen-activated protein kinase (MAPK) members after LPS treatment was significantly recovered in the AEAC-pretreated group compared to the Vehicle+LPS group, enhancement of the phosphorylation of mitogen-activated protein kinase (MAPK) members after LPS treatment was significantly recovered in the AEAC-pretreated group, while cell cycle arrest at the G2/M phase caused by LPS treatment was less severe in the AEAC+LPS group. The increase in reactive oxygen species (ROS) generation induced by LPS treatment was also lower in the AEAC-pretreated group than in the Vehicle+LPS group. This is the first study to show that AEAC exerts anti-neuroinflammatory activity against LPS stimulation by regulating the MAPK signaling pathway, the cell cycle, and ROS production.

Non-saponin fraction of red ginseng inhibits monocyte-to-macrophage differentiation and inflammatory responses in vitro (홍삼 비사포닌 분획의 단핵세포 분화와 염증반응에 대한 억제효과)

  • Kang, Bobin;Kim, Chae Young;Hwang, Jisu;Choi, Hyeon-Son
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.70-80
    • /
    • 2019
  • The aim of this study was to investigate the effects of red ginseng-derived non-saponin fraction (NSF) on inflammatory responses and monocyte-to-macrophage differentiation in RAW264.7 and THP-1. NSF effectively inhibited inflammatory responses by downregulating nitric oxide (NO) production and protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). NSF ($2000{\mu}g/mL$) decreased the levels of NO, iNOS, and COX-2 by 33, 83, and 64%, respectively. NSF inhibited the differentiation of monocyte-to-macrophage by decreasing cell adherence along with downregulation of the cluster of differentiation molecule $11{\beta}$ ($CD11{\beta}$) and CD36. In addition, pro-inflammatory cytokines, such as tumor necrosis factor-alpha, interleukin 6, and monocyte chemoattractant protein 1 (MCP-1), were significantly reduced with NSF treatment. The NSF-mediated inhibition of inflammatory responses was due to the regulation of nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). NSF effectively suppressed the translocation of $NF-{\kappa}B$ into the nucleus, while nuclear Nrf2 and its target protein, heme oxygenase-1, levels were significantly increased.

Prototypes of Panaxadiol and Panaxatriol Saponins Suppress LPS-mediated iNOS/NO Production in RAW264.7 Murine Macrophage Cells (RAW264.7 대식세포에서 LPS 매개 iNOS/NO 생성에 대한 protopanaxadiol saponin 및 protopanaxatriol saponin의 억제효과)

  • Kim, Jin-Ik;Narantuya, Nandintsetseg;Choi, Yong-Won;Kang, Dae-Ook;Kim, Dong-Wan;Lee, Kyoung;Ko, Sung-Ryong;Moon, Ja-Young
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1422-1430
    • /
    • 2016
  • This study was performed to investigate the modulatory effects of two prototypes of Panax ginseng saponin fractions, 20(S)-protopanaxadiol saponins (PDS) and 20(S)-protopanaxatriol saponins (PTS), on the induction of inflammatory mediators in lipopolysaccharide (LPS)-treated RAW264.7 murine macrophage cells. For this purpose, RAW264.7 cells were treated with LPS ($10{\mu}g/ml$) before, after, or simultaneously with PDS or PTS ($150{\mu}g/ml$), and the released level of nitric oxide (NO) and expression levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were evaluated. When RAW264.7 cells were treated with LPS and ginseng saponin fractions simultaneously for 24 hr, PTS, compared to PDS, more strongly attenuated the NO production induced by LPS treatment. When the cells were pretreated with LPS for 2 hr followed by PDS or PTS treatment for 24 hr, both ginseng saponins strongly reduced NO release. The pretreatment of RAW264.7 cells with PDS or PTS for 2 hr followed by LPS treatment for 24 hr significantly attenuated the LPS-induced production of NO. PTS showed stronger inhibitory potency to NO generation than PDS. Our western blot experiment showed that both PDS and PTS ($150{\mu}g/ml$) also significantly down-regulated the expressions of iNOS and COX-2 induced by LPS treatment. Our results suggest that both PDS and PTS possess strong protective effects against LPS-stimulated inflammation and that their protective effects are mediated by the suppression of NO synthesis via down-regulation of pro-inflammatory enzymes, iNOS, and COX-2 in the RAW264.7 cells.

Inhibition of LPS Induced iNOS, COX-2 and Cytokines Expression by $Genistein-4'-O-{\alpha}-L-Rhamnopyranosyl-(1-2)-{\beta}-D-Glucopyranoside$ through the $NF-{\kappa}B$ Inactivation in RAW 264.7 Cells ($Genistein-4'-O-{\alpha}-L-rhamnopyranosyl-(1-2)-{\beta}-D-glucopyranoside$의 RAW 264.7 세포에서 $NF-{\kappa}B$ 불활성화를 통한 LPS에 의해 유도되는 iNOS, COX-2 그리고 cytokine들의 발현 저해효과)

  • Park, Seung-Jae;Kim, Ji-Yeon;Jang, Young-Pyo;Cho, Young-Wuk;Ahn, Eun-Mi;Baek, Nam-In;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.38 no.4
    • /
    • pp.339-348
    • /
    • 2007
  • This study were designed to evaluate the anti-inflammatory effects of $genistein-4'-O-{\alpha}-L-rhamnopyranosyl-(1-2)-{\beta}-D-glucopyranoside$ (GRG) isolated from Sophora japonica (Leguminosae) on the lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin ($PGE_2$) production by RAW 264.7 cell line. GRG significantly inhibited the LPS-induced NO and $PGE_2$ production. Consistent with these observations, GRG reduced the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the protein and mRNA levels in a concentration-dependent manner. In addition, the release and the mRNA expression levels of tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ and interleukin-6 (IL-6) were also reduced by GRG. Moreover, GRG attenuated the LPS-induced activation of nuclear factor-kappa B ($NF-{\kappa}B$), a transcription factor necessary for pro-inflammatory mediators, iNOS, COX-2, $TNF-{\alpha}$ and IL-6 expression. These results suggest that the down regulation of iNOS, COX-2, $TNF-{\alpha}$, and IL-6 expression by GRG are achieved by the downregulation of $NF-{\kappa}B$ activity, and that is also responsible for its anti-inflammatory effects.