• Title/Summary/Keyword: Cycling test

Search Result 329, Processing Time 0.023 seconds

Effect of Immersion in Water and Thermal Cycling on the Mechanical Properties of Light-cured Composite Resins (광중합형 수복용 복합레진의 기계적 성질에 미치는 수중침적과 Thermal Cycling의 영향)

  • Bae, Tae-Sung;Kim, Tae-Jo;Kim, Hyo-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.327-336
    • /
    • 1996
  • This study was performed to investigate the effec% of immersion in water and thermal cycling on the mechanical peoperties of light cured restorative composite resins. Five commerically available light-cured composite resins(Photo Clearfil A : CA, Lite-Fil A . LF, Clearril Photo Posterior CP, Prisms AP.H.. PA, 2100 : ZH) were unto The specimens of 12 m in diameter and 0.7 m in thickness were made, and an immersion in $37^{\circ}C$ water for 7 days and a thermal cycling of 1000 cycles at 15 second dwell time each in $5^{\circ}C$ and $55^{\circ}C$ baths were performed. Biaxial flexure test was conducted using the ball-on-three-ball method at the crosshead speed of 0.5mm/min. In order to investigate the deterioration of composite resins during the thermal cycling test, Weibull analysis for the biaxial flexure strengths was done. Fracture surfaces and the surfaces before and after the thermal cycling test were examined by SEM. The highest Weibull modulus value of 10.09 after thermal cycling tests which means the lowest strength variation, was observed in the CP group, and the lowest value of 4.47 was obsered in the LF Group. Biaxial flexure strengths and Knoop hardness numbers significantly decreased due to the thermal cycling ($\textit{p}$< 0.01), however, they recovered when specimens were drie4 The highest biaxial flexure strength of 125.65MPa was observed in the ZH group after the thermal cycling test, and the lowest value of 64.86MPa was observed in the CA group. Biaxial flexure strengths of ZH and CP groups were higher than those of PA, CF, and CA groups after thermal cycling test($\textit{p}$< 0.05). Knoop hardness numbers of CP group after the thermal cycling test was the highest(95.47 $\pm$ 7.35kg/$mm^2$) among the samples, while that of CA group was the lowest(30.73 $\pm$ 2.58kg/$mm^2$). Knoop hardness numbers showed the significant differences between the CP group and others after the thermal cycling test(($\textit{p}$< 0.05). Fracture surfaces showed that the composite resin failure developed along the matrix resin and the filler/resin interface region, and the cracks propagated in the conical shape from the maximum tensile stress zone.

  • PDF

Comparison of sensorimotor training and cycling exercise for dynamic balance and gait function stroke patient: Single subject design (뇌졸중 환자의 동적균형 및 보행에 대한 감각운동 훈련과 사이클링 운동의 효과 비교 : 개별사례연구)

  • Yang, Hae-Duck;Oh, Duck-Won
    • Journal of Korean Physical Therapy Science
    • /
    • v.17 no.1_2
    • /
    • pp.1-9
    • /
    • 2010
  • Background: The objective of this study was to determine whether sensorimotor training using an unstable surface affects dynamic balance and gait function in patients with hemiparesis, and to compare the effect of sensorimotor training with that of cycling exercise. Methods: Two subjects with post-stroke hemiparesis volunteered to participate in this study. Single-subject A-B design with alternating treatment was used for this study. Baseline(A) and intervention(B) phases were performed for 7 and 8 sessions, respectively. Sensorimotor training and cycling exercise were performed for 20 minutes in randomized order. Assessment tools were made by using a step test, timed up and go(TUG) test, and 6-minute walk test(6MWT). Results: Each of the participants improved in all three tests after the two interventions. Participants 1 and 2 showed the improvement for their assessment score after sensorimotor training in the step test by 42.1%(p<.05) and 58%, in the TUG, 31% and 19.5%, and in the 6MWT test, 32.3% and 10.6%(p<.05), respectively. After cycling exercise, participants 1 and 2 also improved in the step test by 32.5% and 53.1%, in the TUG, 27.4% and 18%, and in the 6MWT test, 28.8% and 3%. In statistical analysis between the two interventions, sensorimotor training showed a significant increased values in the step test for participant 1 and the 6MWT for participant 2 as compared with those of cycling exercise. Conclusion: Sensorimotor training and cycling exercise are helpful for improving dynamic balance and gait capacity. Furthermore, sensorimotor training may be more helpful than cycling exercise.

  • PDF

Stability of Li[Co0.1Ni0.15Li0.2Mn0.55]O2 Cathode Material for Lithium Secondary Battery (리튬 2차 전지용 Li[Co0.1Ni0.15Li0.2Mn0.55]O2 양극물질의 안정성 고찰)

  • Park, Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.443-449
    • /
    • 2007
  • The structural and thermal stability of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ electrode during cycling process was studied. The sample was prepared by simple combustion method. Although there were irreversible changes on the initial cycle, O3 stacking for $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ structure was retained during the first and subsequent cycling process. Impedance of the test cell was decreased after the first charge-discharge process, which would be of benefit to intercalation and deintercalation of lithium ion on subsequent cycling. As expected, cycling test for 75 times increased impedance of the cell a little, instead, thermal stability of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$ was improved. Moreover, based on DSC analysis, the initial exothermic peak was shifted to high temperature range and the amount of heat was also decreased after cycling test, which displayed that thermal stability was not deteriorated during cycling.

Analysis of the Causes of Cracks in Rocket Propellant in Thermal Cycling Test (로켓탄 추진기관 온도반복시험 균열 원인분석)

  • Bak, Jin Man;Park, Soon Woo
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.4
    • /
    • pp.735-749
    • /
    • 2023
  • Purpose: The purpose of this study is to derive solutions and prevent similar cases from occurring by analyzing the causes of cracks found in temperature cycling tests of rocket motor. Methods: By combining the results of the current state confirmation test, non-destructive test, domestic and foreign rocket motor comparison test, cutting test, and adhesion test according to the number of times to apply mold release agent, a Cause and Effect Diagram analysis was performed to derive the cause of cracks. Results: Through this study, 26 factors that could cause cracking in rocket motors during temperature cycling tests were identified. Through various additional test results, a total of five causes were identified, including chemical and structural design of the joint between the propellant and stress relief insert, omission of procedure in the manufacturing procedures, natural aging due to temperature, and load accumulation due to temperature changes. The fundamental cause was confirmed to be insufficient consideration of the release properties of the propellant and stress relief insert. Conclusion: During the design process, it was confirmed that this could be solved by structurally or chemically designing the insert so that it does not combine with the propellant, or by applying a mold release agent during the manufacturing process.

Study on the Autofrettage Pressure for SCBA Type3 Cylinder (공기호흡기용 Type3 용기의 자긴압력과 수명에 관한 연구)

  • Kim, Kwang Seok;Lee, Kyomin;Lee, Jaehun;Cho, Seongmin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.53-56
    • /
    • 2016
  • In this study, experiments and finite element method analysis were used to determine the autofrettage pressure that is optimal and then maximizes the cycling life of Type3 composite cylinders used in self-contained breathing apparatus. For both approaches, the cylinders were pressurized at 100, 110, ${\ldots}$, 290 % of the test pressure, respectively. The stresses were computed by the FEM analysis; while the strains of cylinders were recorded and the failure modes were monitored during the cycling test. As a result, from the good agreements between the simulations and experiments, it was concluded that at least 70 % of the test pressure should be applied as the autofrettage pressure in order to takes visible effect on the cycling life, and 160 % of the test pressure induces the maximum cycling life and the desired failure mode.

THE REMINERALIZING EFFECTS OF EARLY ENAMEL CAR10US LESION BY SUPERSATURATED BUFFER SOLUTION UNDER PH CYCLING MODEL (pH 순환 모델에서 과포화 용액의 초기 우식 법랑질에 대한 재광화 효과)

  • 김소라;홍석진;노병덕;이찬영;금기연
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.4
    • /
    • pp.341-349
    • /
    • 2001
  • Dental caries is the most common oral disease. There are many factors contributing to its development, but complete understanding and prevention are not fully known. However, it is possible to remineralize the early enamel curious lesion by fluoride containing remineralization solution. Recently the pH-cycling model has been used to examine the effect of fluoride solution on remineralization of artificial caries in vitro as it can closely simulate the conditions encountered in vivo within a carefully controlled environment. The aim of this study was to evaluate the remineralizing effects of supersaturated buffer solutions under pH-cycling model. The specimen with 3mm-diameter was made using mature bovine incisors which has no caries and has sound enamel surface. Early curious lesions were produced by suspending each specimens into demineralization solution at pH 5.0 for 33 hours and the specimen whose surface hardness value ranged from 25 to 45 VHN were used. The pH cycling treatment regimen consisted of 5 min soaks of three treatment solutions four times per days for 15 days and the continuous cycling of demineralization and remineralization were carried out for 15 days. Following the pH-cycling treatment regimen, the specimens' surface microhardness were measured by the Vickers hardness test (VHN) and analyzed by ANOVA and Duncan's multiple-range test. 1. The surface microhardness value of supersaturated solution, Senstime, and Gagline groups were increased after pH cycling, and that of supersaturated solution was significantly Increased compared to saline group(P<0.05). 2. The surface remineralization effect of fluoride containing solutions was accelerated by saliva under pH-cycling mode 3. The pH cycling model was considered appropriate to mimic the intra-oral pH changes when evaluating demineralization and remineralization in vitro. Under the results of above study, salivary remineralization effect can be improved by fluoride containing remineralization solution. The pH-cycling model was considered appropriate to mimic the intra-oral pH changes when evaluating demineralization and remineralization in vitro.

  • PDF

EFFECTS OF AGING AND THERMAL CYCLING ON THE BIAXIAL FLEXURE STRENGTH OF VENEERING RESIN COMPOSITES FOR CROWN (시효처리와 thermal cycling이 치관전장용 복합레진의 2축굽힘강도에 미치는 영향)

  • Jeong, Gwan-Ho;Ha, Il-Soo;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.597-606
    • /
    • 1999
  • This study was performed to evaluate the effect of aging and thermal cycling on the biaxial flexure strength of low commercially available veneering resin composites for crown(Dentacolor : DC, Artglass : AG, Esternia : ET and Targis : TG). Disc specimens were fabricated in a teflon mold giving 12mm in diameter and 1mm in thickness. All samples were divided into 4 groups. Group 1 was dried in a dessicator at $25^{\circ}C$ for 30 days. Group 2 was immersed in distilled water at $37^{\circ}C$ for 30 days. Group 3 was immersed in distilled water at $65^{\circ}C$ for 30 days. Group 4 was subjected to 10,000 thermal cycles between $5^{\circ}C\;and\;55^{\circ}C$, and the immersion time in each bath was 15 seconds per cycle. Biaxial flexure test was conducted using the ball-on-three-ball method at the cross head speed of 0.5mm/min and fracture surfaces were observed with scanning electoron microscope. The results obtained were summarized as follows; 1. Weibull modulus values, except for the AG group, decreased after thermal cycling treatment. 2. Biaxial flexure strength values of aging group at $37^{\circ}C$ were the lowest in all sample groups. Except for the DC group, strength values were significantly decreased for the drying group. 3. After thermal cycling test, the highest value of biaxial flexure strength of 188.8 MPa was observed in the ET group and the lowest value of 73.2 MPa was observed in the DC group. The strength values showed the significant differences in each group (p<0.05). 4. Observation of surfaces after thermal cycling test revealed the ditching in the part of surrounding large fillers.

  • PDF

The analysis of electrical characteristics with Micro-crack in PV module (Micro-cracks에 의한 PV 모듈의 전기적 특성 분석)

  • Song, Young-Hun;Ji, Yand-Geun;Kim, Kyung-Soo;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.25-30
    • /
    • 2011
  • In this paper, we analyzed the electrical characteristics with Micro-cracks in Photovoltaic module. Micro cracks are increasing the breakage risk over the whole value chine from the wafer to the finished module, because the wafer or cell is exposed to mechanical stress. And The solar cells have to with stand the stress under out door operation in the finished module. Here the mechanical stress is induced by temperature changes and mechanical loads from wind and snow. So, we experimentally analyze the direct impact of micro-cracks on the module power and the consequences after artificial aging. The first step, we made micro-cracks in PV module by mechanical load test according to IEC 61215. Next, PV modules applied the thermal cycling test, because micro-cracks accelerated aging by thermal cycling test, according to IEC61215. Before every test, we checked output and EL image of PV module. As the result of first step, we detected little power loss(0.9%). But after thermal cycling test increased power loss about 3.2%.

  • PDF

Cryogenic Thermal Cycling Test on IGRINS cross-disperser VPH Grating

  • Jeong, Hyeon-Ju;Lim, Ju-Hee;Lee, Sung-Hoo;Deen, Casey;Pak, Soo-Jong;Yuk, In-Soo;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.156-156
    • /
    • 2011
  • VPH (Volume Phase Hologram) grating is one of the transmission gratings and is known as its remarkable efficiency (>90%). It has two different densities of gelatins causing interference patterns. The VPH grating is favored in many astronomical instruments these days and also IGRINS, which is up coming near infrared high-resolution spectroscope expected to see the first light next year, uses the VPH grating as its cross-disperser. The infrared astronomical instruments operate at cryogenic temperature (~100K) in order to cut down thermal noise and the optical components of IGIRNS will be operated at 130K. The VPH grating is sandwiched in between fused silica or glass and glued together using optical adhesive. IGRINS is expected to go through 50 times of thermal cycling in 10 years including the performance test and this research is to check whether the physical characteristic such as the adhesion or dichromatic gelatin does not break and change from the several cryogenic thermal cycling. The two identical test gratings provided from Kaiser Optical System, Inc. are used in this test. One VPH grating is cooled down to 100K for 2 hours with maximum dT/dt = 5 and warmed up to the room temperature and another grating is kept stored in the room temperature and used as a control sample. In order to check the change, we inspected the grating with eyes and checked its efficiency and transmission at the room temperature every 10 cycling. From the 40 times of cryogenic temperature cool down cycling, the VPH grating showed no signs of change within the error compared to the control sample. We concluded the VPH grating is durable through several cryogenic thermal cycling.

  • PDF

Cycling life prediction method of the filament-wound composite cylinders with metal liner (Type 3 복합재 압력용기의 반복수명 예측 방법에 대한 연구)

  • Park, Ji-Sang;Chung, Sang-Su;Chung, Jae-Han
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.45-48
    • /
    • 2005
  • In manufacturing process of composite cylinders with metal liner, the autofrettage process which induces compressive residual stress on liner to improve cycling life can be applied. In this study, finite element analysis technique is presented, which can predict accurately the compressive residual stress on liner induced by autofrettage and stress behavior after. Material and geometry non-linearity is considered in finite element analysis, and the Von-Mises stress of a liner is introduced as a key parameter that determines pressure cycling life of composite cylinders. Presented methodology is verified through fatigue test of liner material and pressure cycling test of composite cylinders.

  • PDF