• Title/Summary/Keyword: Cycling Safety

Search Result 61, Processing Time 0.028 seconds

Study on the Autofrettage Pressure for SCBA Type3 Cylinder (공기호흡기용 Type3 용기의 자긴압력과 수명에 관한 연구)

  • Kim, Kwang Seok;Lee, Kyomin;Lee, Jaehun;Cho, Seongmin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.53-56
    • /
    • 2016
  • In this study, experiments and finite element method analysis were used to determine the autofrettage pressure that is optimal and then maximizes the cycling life of Type3 composite cylinders used in self-contained breathing apparatus. For both approaches, the cylinders were pressurized at 100, 110, ${\ldots}$, 290 % of the test pressure, respectively. The stresses were computed by the FEM analysis; while the strains of cylinders were recorded and the failure modes were monitored during the cycling test. As a result, from the good agreements between the simulations and experiments, it was concluded that at least 70 % of the test pressure should be applied as the autofrettage pressure in order to takes visible effect on the cycling life, and 160 % of the test pressure induces the maximum cycling life and the desired failure mode.

The Effects of Temperature Cycling on the Production of Aflatoxin by Aspergillus parasiticus R-716 (Aspergillus parasiticus R-716의 aflatoxin생합성에 미치는 temperature cycling의 영향)

  • 정영철;성낙계;이용욱;정덕화
    • Journal of Food Hygiene and Safety
    • /
    • v.1 no.2
    • /
    • pp.157-162
    • /
    • 1986
  • ABSTRACT-This study was designed to observe the effects of temperature cycling on the aflatoxin production by Aspergillus parasiticus R-716 in modified SLS medium. Temperature cycling resulted in total aflatoxin production more than did constant incubation at either $28^{\circ}C$, which was considered to be optimum for aflatoxin production, or $17.5^{\circ}C$, which had the same total thermal input as the temperature cycling. The aflatoxin biosynthesis correlated with the color intensity of media, but was controversal with lipid biosynthesis, and aflatoxin concentration is not related to changes in the fatty acid compositions of used strain.strain.

  • PDF

Cyclists' Posture Factors Affecting Pedaling Rate in Cycle (사이클 페달 회전수에 영향을 미치는 자세 요인)

  • Hah, Chong-Ku;Jang, Young-Kwan;Ki, Jae-Sug;Kim, Sang-Soo
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.4
    • /
    • pp.81-86
    • /
    • 2010
  • Despite the importance of cycling postures during cycling performances, there has been a very little research investigating cycling postures and pedaling rate for particularly concerning domestic cyclists. The aim of this study was to analyze correlations and effects between cycling postures and pedaling rate in track cycling. Twelve male racing cyclists (six racing and university cyclists) participated in this research. For this study, seven infrared cameras (Qualisys ProReflex MCU-240s) were used for collecting data and these were processed via QTM (Qualisys Tracker Manager) software. It appeared that pedaling rate had correlations with regard to a shoulder angle (R=-.601) and displacement between shoulder joints(R= -.637), but a knee (R=-.601) and ankle angle (R=.667). Moreover, two multiple regression equations of pedaling rate for cycling postures were significant and R2 of the first order equation y (pedaling rate) = 0.039x (knee angle) - 1.068 was less than the second order equation y = 0.006x2 - 1.287x + 69.674. In conclusion, cycling postures affected the pedaling rate. Further study should be researched on postures in relation to air resistance in a wind tunnel.

A Study on Long-Term Cycling Performance by External Pressure Change for Pouch-Type Lithium Metal Batteries

  • Seong-Ju Sim;Bong-Soo Jin;Jun-Ho Park;Hyun-Soo Kim
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.314-320
    • /
    • 2024
  • Lithium dendrite formation is one of the most significant problems with lithium metal batteries. The lithium dendrite reduces the lithium metal batteries' cycling life and safety. To apply consistent external pressure to a lithium metal pouch cell, we design a press jig in this study. External pressure creates dense lithium morphology by preventing lithium dendrite formation. After 300 cycles at 1 C, the cells with the external pressure perform far better than the cells without it, with a cycling retention of 97.8%. The formation of stable lithium metal is made possible by external pressure, which also enhances safety and cyclability.

A Study on the Behavior of Ambient Hydraulic Cycling Test for 70 MPa Type3 Hydrogen Composite Cylinder (70 MPa용 Type 3 수소 복합용기의 상온수압반복 거동에 관한 연구)

  • Cho, Sung-Min;Kim, Chang-Jong;Kim, Young-Gyu
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.46-50
    • /
    • 2012
  • The performance of the Type3 hydrogen composite cylinder whose pressure is 70 MPa using hydrostatic cycling test equipment was evaluted in this study. It also includes the finite element method analysis on the performance of the cylinder when the pressure is applied. As a result, cylinder body parts of the Type3 hydrogen composite cylinder, which draws attention with its safe status and the lightness, was ruptured first and the same result has been found out through the finite element method. The dome knuckle and the cylinder body were proved as the weakest parts since the cylinder body parts was expanded under the pressure.

Temperature Variations of Air Pocket in Type-3 Composite Vessel during Ambient Hydraulic Cycling Test (상온 수압반복시험 시 Type 3 복합재용기 내 공기층의 온도변화)

  • Cho, Sung-min;Kim, Kwang Seok;Kim, Chang Jong;Lyu, Geun-jun;Lee, Yeon-jae;Jo, Yun Seong;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.120-125
    • /
    • 2015
  • This research aims to increase the reliability and reproducibility of the ambient cycling test by properly making corrections to the test procedure. The vessel (106 L) is initially filled with 70 L of water and horizontally placed on a balance. The pressure range inside the vessel varies from 2.5 to 25.9 MPa at the frequency of 6 cycles per minute. After reviewing the results, there was a temperature difference of approximately $10^{\circ}C$ between the air pocket and the water, and the upper part of the liner faced a repeated temperature change of $40^{\circ}C$. It is possible for the aluminum liner of the composite vessel to be damaged by such a sharp change in temperature. Additionally, as a result, no pass having anything to do with the purpose of the test would occur. Therefore, it is suggested that the air pocket be completely removed.

Failure of Ceramic Coatings Subjected to Thermal Cyclings (열피로에 의한 세라믹 코팅재의 파손)

  • Han Ji-Won
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.1-5
    • /
    • 2005
  • An experimental study was conducted to develop an understanding of failure of ceramic coating when subjected to a thermal cycling. Number of cycles to failure were decreased as the coating thickness and the oxide of bond coat were increased. Using the finite element method, an analysis of stress distribution in ceramic coatings was performed. Radial compressive stress was increased in the top/bond coat interface with increasing coating thickness and oxide of bond coat.

A Methodology for Evaluating Cycling Safety and Mobility using Probe Bicycle Sensor Data (프로브 자전거 센서자료를 이용한 자전거 주행안전성 및 이동성 통합평가기법 개발)

  • Joo, Shin-Hye;Oh, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.3
    • /
    • pp.43-55
    • /
    • 2012
  • Bicycle is an environment-friendly transport mode contributing to a more sustainable transportation systems. To innovatively increase the use of bicycle as a significant transport mode, bicycle-friendly roadway environment should be provided. This study proposes a method to evaluate cycling environment based on the analysis of data collected from an specially equipped probe bicycle. The inertial measurement unit(IMU) consisting of a gyro sensor, accelerometer, and a global positioning systems(GPS) receiver was installed on the probe bicycle. Cycling stability index(CSI) and bicycle speed data were used as inputs of the proposed evaluation framework adopting the Fault Tree Analysis, which is a well-known technique for the risk analysis. The outcomes of this study will serve as an intelligent assesment tool for cycling environment.

Assessment of Stability and Safety of Maskne Cosmetic

  • Minjung, Kim;Jeonghee, Kim
    • Journal of Fashion Business
    • /
    • v.26 no.6
    • /
    • pp.105-115
    • /
    • 2022
  • Wearing a mask is still advised since COVID-19 continues to spread. However, masks may also irritate the skin and cause mask acne, often known as "maskne", which is a type of acne mechanica caused by friction between the skin and clothing. Therefore, there is a need to develop an effective maskne cosmetic. In this study, we made the maskne cosmetics containing humulus lupulus extract and copper tripeptide-1 and investigated its stability and safety. To measure stability, a centrifugation test and heat-cool cycling were done, and changes in viscosity and pH were measured for 8 weeks. The Cumulative Irritation Test (CIT, WKIRB-202111-HR-096) was performed and positive reactions were determined by the ICDRG criteria. The results indicated that the samples were stable after centrifugation, temperature cycling, viscosity, and pH tests. In addition, cosmetic safety test results revealed that maskne cosmetics containing humulus lupulus extract and copper tripeptide-1 did not cause any skin responses. These findings indicate that prepared maskne cosmetics' stability and safety were comparable to those of currently available commercial cosmetics.

Development of Subminiature Type 3 Composite Pressure Vessel for Cooling Unit in Electric Appliances (전자제품 쿨링 유닛용 초소형 타입 복합재 압력용기 개발)

  • Cho, Sung-Min;Lee, Seung-kuk;Moon, Jong-sam;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.151-157
    • /
    • 2018
  • In this study, we have developed a composite pressure vessel that is compact and can store refrigerant at high pressure to increase the refrigerant volume. The composite pressure vessel is made of aluminum-based duralumin, which has high rigidity and excellent elongation in the inner liner, considering the characteristics of products in the aerospace and defense industry, where the safety of the applied product is considered as a priority. High strength carbon fiber was applied to the outside. In order to evaluate the performance of the developed product, burst test and cycling test were carried out. In burst test, an excellent safety margin equivalent to 2.7 times the operating pressure was obtained. In cycling test, a stable failure mode in which 'pre-burst leak' occurs is proved and the soundness of the product is proved.