• Title/Summary/Keyword: Cycling Life

Search Result 177, Processing Time 0.019 seconds

Thermal Cycling Fatigue Analysis of Flip-Chip BGA Solder Joints (플립 칩 BGA 솔더접합부의 열사이클링 피로해석)

  • 김경섭;유정희;김남훈;장의구;임희철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.27-32
    • /
    • 2002
  • In this paper, global full 3D finite element analysis fatigue models are constructed for flip-chip BGA on board to predict the creep fatigue life of solder joints during the thermal cycling test. The fatigue model applied is based on Darveaux's empirical equation approach with non-linear viscoplastic analysis of solder joints. It was estimated by the creep life as the variations of the four kinds of thermal cycling test conditions, pad structure, composition and size of solder ball. The shortest fatigue life of results was obtained at the thermal cycling testing condition of -65℃ ∼ 150℃. It was increased about 3.5 times in comparison with that of 0℃ ∼ 100℃. As the change of pad structure at the same other conditions, the fatigue life of SMD structure increased about 5.7% as compared with NSMD structure. Consequently, it was confirmed that the fatigue life became short as the creep strain energy density increased in solder joint.

  • PDF

Study on the Autofrettage Pressure for SCBA Type3 Cylinder (공기호흡기용 Type3 용기의 자긴압력과 수명에 관한 연구)

  • Kim, Kwang Seok;Lee, Kyomin;Lee, Jaehun;Cho, Seongmin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.53-56
    • /
    • 2016
  • In this study, experiments and finite element method analysis were used to determine the autofrettage pressure that is optimal and then maximizes the cycling life of Type3 composite cylinders used in self-contained breathing apparatus. For both approaches, the cylinders were pressurized at 100, 110, ${\ldots}$, 290 % of the test pressure, respectively. The stresses were computed by the FEM analysis; while the strains of cylinders were recorded and the failure modes were monitored during the cycling test. As a result, from the good agreements between the simulations and experiments, it was concluded that at least 70 % of the test pressure should be applied as the autofrettage pressure in order to takes visible effect on the cycling life, and 160 % of the test pressure induces the maximum cycling life and the desired failure mode.

Cycling life prediction method of the filament-wound composite cylinders with metal liner (Type 3 복합재 압력용기의 반복수명 예측 방법에 대한 연구)

  • Park, Ji-Sang;Chung, Sang-Su;Chung, Jae-Han
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.45-48
    • /
    • 2005
  • In manufacturing process of composite cylinders with metal liner, the autofrettage process which induces compressive residual stress on liner to improve cycling life can be applied. In this study, finite element analysis technique is presented, which can predict accurately the compressive residual stress on liner induced by autofrettage and stress behavior after. Material and geometry non-linearity is considered in finite element analysis, and the Von-Mises stress of a liner is introduced as a key parameter that determines pressure cycling life of composite cylinders. Presented methodology is verified through fatigue test of liner material and pressure cycling test of composite cylinders.

  • PDF

A Comparative Study of the Fatigue Behavior of SnAgCu and SnPb Solder Joints (무연솔더(SnAgCu)와 유연솔더(SnPb)의 피로 수명 비교 연구)

  • Kim, Il-Ho;Park, Tae-Sang;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1856-1863
    • /
    • 2004
  • In the last 50 years, lead-contained solder materials have been the most popular interconnect materials used in the electronics industry. Recently, lead-free solders are about to replace lead-contained solders for preventing environmental pollutions. However, the reliability of lead-free solders is not yet satisfactory. Several researchers reported that lead-contained solders have a good fatigue property. The others published that the lead-free solders have a longer thermal fatigue life. In this paper, the reason for the contradictory results published on the estimation of fatigue life of lead-free solder is investigated. In the present study, fatigue behavior of 63Sn37Pb, and two types of lead-free solder joints were compared using pseudo-power cycling testing method, which provides more realistic load cycling than chamber cycling method does. Pseudo-power cycling test was performed in various temperature ranges to evaluating the shear strain effect. A nonlinear finite element model was used to simulate the thermally induced visco-plastic deformation of solder ball joint in BGA packages. It was found that lead-free solder joints have a good fatigue property in the small temperature range condition. That condition induce small strain amplitude. However in the large temperature range condition, lead-contained solder joints have a longer fatigue life.

Thermal Cycling Analysis of Flip-Chip BGA Solder Joints (플립 칩 BGA 솔더 접합부의 열사이클링 해석)

  • 유정희;김경섭
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • Global full 3D finite element analysis fatigue models are constructed for flip-chip BGA on system board to predict the creep fatigue life of solder joints during the thermal cycling test. The fatigue model applied is based on Darveaux's empirical equation approach with non-linear viscoplastic analysis of solder joints. The creep life was estimated the creep life as the variations of the four kinds of thermal cycling test conditions, pad structure, composition and size of solder ball. The shortest fatigue life was obtained at the thermal cycling test condition from $-65^{\circ}C$ to $150^{\circ}C$. It was increased about 3.5 times in comparison with that from $0^{\circ}C$ to $100^{\circ}C$. At the same conditions, the fatigue life of SMD structure as the change of pad structure increased about 5.7% as compared with NSMD structure. Consequently, it was confirmed that the fatigue life became short as the creep strain energy density increased in solder joint.

  • PDF

Development of Reliability Design Technique and Life Prediction Model for Electronic Components (취성/연성 파괴에 대한 수명예측 모델 및 신뢰성 설계)

  • Kim, Il-Ho;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1740-1743
    • /
    • 2007
  • In this study, two types of fatigue tests were conducted. First, cyclic bending tests were performed using the micro-bending tester. A four-point bending test method was adopted, because it induces uniform stress fields within a loading span. Second, thermal fatigue tests were conducted using a pseudo power cycling machine which was newly developed for a realistic testing condition. The pseudo-power cycling method makes up for the weak points in a power cycling and a chamber cycling method. Two compositions of solder are tested in all test condition, one is lead-free solder (95.5Sn4.0Ag0.5Cu) and the other is eutectic lead-contained solder (63Sn37Pb). In the cyclic bending test, the solder that exhibits a good reliability can be reversed depending on the load conditions. The lead-contained solders have a longer fatigue life in the region where the applied load is high. On the contrary, the lead-free solder sustained more cyclic loads in the small load region. A similar trend was detected at the thermal cycling test. A three-dimensional finite element analysis model was constructed. A finite element analysis using ABAQUS was performed to extract the applied stress and strain in the solder joints. A constitutive model which includes both creep and plasticity was employed. Thermal fatigue was occurred due to the creep. And plastic deformation is main damage for bending failure. From the inelastic energy dissipation per cycle versus fatigue life curve, it can be found that the bending fatigue life is longer than the thermal fatigue life.

  • PDF

Cycling life prediction method considering compressive residual stress on liner for the filament-wound composite cylinders with metal liner (금속재 라이너를 갖는 복합재 압력용기의 라이너 압축잔류응력을 고려한 반복수명 예측 방법에 대한 연구)

  • Park, Ji-Sang;Jeung, Sang-Su;Chung, Jae-Han
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.22-28
    • /
    • 2006
  • In manufacturing process of composite cylinders with metal liner, the autofrettage process which induces compressive residual stress on the liner to improve cycling life can be applied. In this study, a finite element analysis technique is presented, which can predict accurately the compressive residual stress on the liner induced by autofrettage and stress behavior after. Material and geometrical non-linearity is considered in the finite element analysis, and the Von-Mises stress of a liner is introduced as a key parameter that determines pressure cycling life of composite cylinders. Presented methodology is verified through fatigue test of liner material and pressure cycling test of composite cylinders.

Degradation Mechanisms of a Li-S Cell using Commercial Activated Carbon

  • Norihiro Togasaki;Aiko Nakao;Akari Nakai;Fujio Maeda;Seiichi Kobayashi;Tetsuya Osaka
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.361-368
    • /
    • 2023
  • In lithium-sulfur (Li-S) batteries, encapsulation of sulfur in activated carbon (AC) materials is a promising strategy for preventing the dissolution of lithium polysulfide into electrolytes and enhancing cycle life, because instead of solid-liquid-solid reactions, quasi-solid-state (QSS) reactions occur in the AC micropores. While a high weight fraction of sulfur in S/AC composites is essential for achieving a high energy density of Li-S cells, the deterioration mechanisms under such conditions are still unclear. In this study, we report the deterioration mechanisms during charge-discharge cycling when the discharge products overflow from the AC. Analysis using scanning electron microscopy and energy-dispersive X-ray spectrometry confirms that the sulfur in the S/AC composites migrates outside the AC as cycling progresses, and it is barely present in the AC after 20 cycles, which corresponds to the capacity decay of the cell. Impedance analysis clearly shows that the electrical resistance of the S/AC composite and the charge-transfer resistance of QSS reactions significantly increase as a result of sulfur migration. On the other hand, the charge-discharge cycling performance under limited-capacity conditions, where the discharge products are encapsulated inside the AC, is extremely stable. These results reveal the degradation mechanism of a Li-S cell with micro-porous carbon and provide crucial insights into the design of a S/AC composite cathode and its operating conditions needed to achieve stable cycling performance.

Development of virtual upcycling fashion design based on 3-dimensional digital clothing technology (디지털 클로딩 기술 기반 가상착의 업사이클링 패션디자인)

  • Chen, Tianyi;Yang, Eun Kyoung;Lee, Younhee
    • The Research Journal of the Costume Culture
    • /
    • v.29 no.3
    • /
    • pp.374-387
    • /
    • 2021
  • The purpose of this study is to develop up-cycling fashion design methods centered on discarded denim material for the study of original up-cycling design methods. Up-cycling fashion design work was developed using digital clothing technology. This is a recent hot topic among sustainable fashion design methods. Up-cycling fashion design expression methods (categorized as dismantlement, collages, dépaysement, grafting, weaving, and tearing) were centered on design methods. These methods create various three-dimensional modeling effects in planar forms, whereby five pieces can be applied to the fabric and digitally produced. The results are as follows: First, the use of discarded denim fabric for the development of up-cycling fashion design pieces enabled the recycling of existing resources, provided solutions to environmental pollution problems, and provided expansion opportunities for design processes for sustainable fashion products that expand the design value of denim products and their utility. Second, new eco-friendly fashion designs that attempt to achieve diversity in modern fashion trends could be presented through formative contemporary fashion produced by up-cycling work products. Third, up-cycling fashion design work is expected to provide opportunities for eco-friendly fashion design methods. This will expand the value of sustainable fashion design by recycling simple waste materials through the use of three-dimensional digital clothing technology and further through the presentation of expanded life cycles that extend product planning, production, and life cycles.

Optimum time-censored ramp soak-stress ALT plan for the Burr type XII distribution

  • Srivastava, P.W.;Gupta, T.
    • International Journal of Reliability and Applications
    • /
    • v.15 no.2
    • /
    • pp.125-150
    • /
    • 2014
  • Accelerated life tests (ALTs) are extensively used to determine the reliability of a product in a short period of time. Test units are subject to elevated stresses which yield quick failures. ALT can be carried out using constant-stress, step-stress, progressive-stress, cyclic-stress or random-stress loading and their various combinations. An ALT with linearly increasing stress is ramp-stress test. Much of the previous work on planning ALTs has focused on constant-stress, step-stress, ramp-stress schemes and their various combinations where the stress is generally increased. This paper presents an optimal design of ramp soak-stress ALT model which is based on the principle of Thermal cycling. Thermal cycling involves applying high and low temperatures repeatedly over time. The optimal plan consists in finding out relevant experimental variables, namely, stress rates and stress rate change points, by minimizing variance of reliability function with pre-specified mission time under normal operating conditions. The Burr type XII life distribution and time-censored data have been used for the purpose. Burr type XII life distribution has been found appropriate for accelerated life testing experiments. The method developed has been explained using a numerical example and sensitivity analysis carried out.

  • PDF