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Abstract. Accelerated life tests (ALTs) are extensively used to determine the reliability of 
a product in a short period of time. Test units are subject to elevated stresses which yield 
quick failures. ALT can be carried out using constant-stress, step-stress, progressive-stress, 
cyclic-stress or random-stress loading and their various combinations. An ALT with 
linearly increasing stress is ramp-stress test. Much of the previous work on planning ALTs 
has focused on constant-stress, step-stress, ramp-stress schemes and their various 
combinations where the stress is generally increased. This paper presents an optimal 
design of ramp soak-stress ALT model which is based on the principle of Thermal cycling. 
Thermal cycling involves applying high and low temperatures repeatedly over time. The 
optimal plan consists in finding out relevant experimental variables, namely, stress rates 
and stress rate change points, by minimizing variance of reliability function with pre-
specified mission time under normal operating conditions. The Burr type XII life 
distribution and time-censored data have been used for the purpose. Burr type XII life 
distribution has been found appropriate for accelerated life testing experiments. The 
method developed has been explained using a numerical example and sensitivity analysis 
carried out. 
 
Key Words: Accelerated life test, ramp soak-stress, thermal cycling, type-I censoring, 
variance of reliability function 
 
 

1. INTRODUCTION 
 
The business environment of the twenty-first century is characterized by the intense global 
competition. As design and manufacturing technologies become more advanced it is 
difficult to obtain the reliability information of products such as mean time to failure 
within a short period of time under normal operating conditions. This problem is 
overcome by Accelerate Life Tests (ALTs) wherein the units are subjected to higher stress 
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levels (for example, higher temperature, voltage, humidity and pressure levels) that yield 
quick failures. Failure data collected from ALT are then extrapolated by means of a 
regression model to estimate failure distribution under design condition.  
Introduced by Chernoff (1962), and Bessler, Chernoff and Marshall (1962) acceleration of 
life test may be carried out in fully accelerated or partially accelerated environment. In 
fully accelerated life testing all the test units are run at accelerated condition, while in 
partially accelerated life testing they are run at both normal and accelerated conditions. 
The term fully accelerated life test has been coined by Bhattacharya and Soejoeti (1989), 
and the term partially accelerated life test is due to Degroot and Goel (1979). The fully 
accelerated life test is widely referred to as an accelerated life test in the literature, and 
therefore the two terms can be used interchangeably.  
Stress under accelerated condition can be applied using constant-stress, step-stress, 
progressive-stress, cyclic-stress, random-stress, or combinations of such loadings. The 
choice of a stress loading depends on how the product or unit is used in service and other 
practical and theoretical limitations (Nelson (1980), Elsayed (1996)). A ramp-stress test 
results when stress is increased linearly. In particular, a ramp test with two linearly 
increasing stresses is a simple ramp test. Ramp tests are used for example in fatigue 
testing (Prot (1948)), capacitors (Endicott, Hatch and Schmer (1965), Starr and 
Endicott(1961)), insulation (Goba(1969), Solomon, Klein and Albert(1976)), and 
integrated circuits (Chan(1990)). 
Optimum constant-stress, step-stress and ramp-stress ALT models as well as constant-
stress and step-stress PALT models have been studied extensively in the literature. Most 
of the work on constant-stress ALT models have been summarized in Nelson (1990), 
Meeker and Escobar (1998). See also Nelson (2005a, 2005b). Gouno and Balakrishnan 
(2001) have provided a concise review of step-stress ALTs. Bai and Chung (1992) have 
considered the optimum design of the ramp tests with two stress rates for the Weibull 
distribution under type-I censoring. Bai and Chun (1993) have developed nonparametric 
inferences for ramp-stress tests under random censoring. Bai, Chun and Cha (1996) have 
obtained an optimum time-censored ramp test for items with the Weibull life distribution 
when there is stress upper bound. Bai and Chung (1992) have considered optimal designs 
for constant PALTs and step-stress PALTs under type-I censoring.  Bai, Chun and Chung 
(1993) have used the maximum likelihood method to estimate the scale parameter and the 
acceleration factor for the log-normally distributed lifetime using constant-stress as well 
as step-stress PALTs and type-I censored data. See also Srivastava and Shukla((2008a, 
2008b),(2009)), Srivastava and Mittal ((2010),(2012a, 2012b, 2012c),(2013a, 2013b, 
2013c))  and the references therein. Park and Yum (1998) are the first to propose the 
optimum ALT plan under modified stress loading methods. Fei (2000), Wang (2001), Gao, 
Hu, Shi and Qin (2008) and Srivastava and Mittal (2013c) have also worked on modified 
stress loading methods. 
In cyclic-stress testing, the stress level is changed according to a fixed pattern. For many 
products, the frequency and length of a cycle affect the lifetime of a product, so they are 
included in the model as stress variable. Common examples of such stress are thermal 
cycling, sinusoidal vibration, and triangular cyclic vibrations (Elsayed(2013)). Insulation 
under AC voltage exhibit sinusoidal stress. Also many metal components repeatedly 
undergo a mechanical stress cycle. 
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However, no work seems to have been done so far on the design of optimum ramp soak- 
stress ALT model. This model has its application in Thermal cycling (Yang (2007)). In 
this paper we have proposed optimum ramp soak ALT model using Burr Type XII life 
distribution and time-censored data. The Burr Type XII distribution has been found 
appropriate for accelerated life testing experiments (Soliman (2005)). The optimum plans 
consist in finding out optimum stress change point(s) and optimum stress rates by 
minimizing asymptotic variance of reliability function with pre-specified mission time.  
 
Acronyms 
ALT accelerated life test 
cdf cumulative distribution function 
pdf probability density function 
Asvar Asymptotic variance 
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2. The Model  
 
The ramp soak-stress ALT model finds its application in thermal cycling that involves 
applying high and low temperatures repeatedly over time (Yang (2007)). The variables 
that define the profile of a thermal cycle include high temperature (Tmax), low temperature 
(Tmin), dwell time (soak time) at high temperature (tmax), dwell time at low temperature 
(tmin), and rate of temperature change (dT/dt), shown graphically in Figure 1. Thermal 
cycling is widely used in environmental stress testing. Automotive engine components 
experience this type of stress when the engine is ignited in cold weather or when the 
vehicle is driven through a flooding road. The engine components have to withstand 
rapidly increasing temperature in the former situation and a sharp temperature drop in the 
latter. Besides heavy metal parts; the products needing ramp and soak control are glass 
and ceramic. A slow ramp minimizes the risk of distortion or cracking due to differential 
thermal expansion within the work. It also helps to avoid temperature overshoot as ramp 
stops and becomes a fixed temperature for a specified dwell time, sometimes called the 
soak segment. At this stage the dwell time is set long enough to ensure that the parts attain 
a uniform temperature throughout and maintain it long enough to complete that stage  of 
the processing. More important, thermal cycling is effective in precipitating fatigue 
failures in a test, especially for connections between two different materials, such as die 
attachments, wire bonds, and the plated wires of electronic products.  

              
Figure 1. Thermal cycling Profile 

 
2.1. Assumptions 
 
a) The lifetimes of test units are independent and identically distributed. 
b) The censoring time η  is pre-specified. 
c) At any constant stress s, the lifetime of a unit follows a Burr type XII model with scale 

parameter (s)α  and shape parameters c & k, and the inverse power law holds for (s)α : 
0 1

0(s) e (s / s) .γ γα =                                                        (1)                                    
d) The shape parameter ‘c’ does not depend on the stress level, and the shape parameter ‘k’ 

is assumed to  be  known for the sake of mathematical convenience. 
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e) For the effect of changing stress levels, a cumulative exposure model holds 
((Nelson  (1980), (1990)), Nilsson (1985), Yin and Sheng (1987)).The cumulative 
exposure  model is given by : 

t

0

du(t) =   ,
(s(u))

ε
α∫                                                           (2) 

where ( )α i is defined in (1) , and s( i ) is a function of time. 
 
2.2. Test procedure 

 
Figure 2.  Ramp soak-stress ALT plan 

 
The ramp soak-stress ALT proceeds as follows,  
 
a) n test units are put to test. 
b) The stress applied to a test unit is continuously increased with constant rate β1 from s0 

till stress level s1 at which the stress level is maintained for some time after which the 
stress applied is decreased with constant rate β2 up to stress level s2 at which it is 
maintained for some time, and then stress is again increased with constant rate β3 till the 
censoring time η  or till it fails, whichever occurs earlier (see Figure 2). 

c) Test units are subject to type-I censoring with the censoring time η . 
d) The stress is a function of time or it is directly proportional to time; 
e) The test is continued until: 

i) all test items fail, or 
ii) a prescribed censoring time 

   whichever occurs earlier, and the test conditions  remain the same. 
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2.3. Burr type XII Life distribution  

The Burr type XII distribution has a non-monotone hazard function, which can 
accommodate many shapes of hazard function. Zimmer, Keats and Wang (1998) have 
fitted Burr type XII distribution to the data from Nelson (1982) on the times to breakdown 
of an insulating fluid between electrodes at a voltage of 34 KV/min. They have also 
provided some other examples where Burr type XII distribution can be used as failure 
time distribution. This distribution has been found appropriate for accelerated life testing 
experiments (see Soliman (2005)).  
The pdf and cdf, respectively of Burr type XII distribution are: 

c 1 c (k 1)g(t;c, k, ) (kc / ) (t / ) (1 (t / ) ) , t 0, c 0, k 0, 0− − +α = α ⋅ α ⋅ + α ≥ > > α >        (3)                                    
c kG(t;c, k, ) 1 (1 (t / ) ) , t 0, c 0, k 0, 0−α = − + α ≥ > > α >                                       (4)                                    

where c and k are shape parameters and α  is scale parameter. The Burr type XII 
distribution is unimodal, and its mode is 1/c

mod eT  [(c 1) / (ck 1)]  if  c 1;= α − + > and the 
pdf is L-shaped if c 1.≤  
The reliability function and hazard function are given, respectively by 

c kR(t) (1 (t / ) ) , t 0, c 0, k 0, 0−= + α ≥ > > α >                                         (5)                                    
c 1 c 1h(t) (kc / ) (t / ) (1 (t / ) ) , t 0, c 0, k 0, 0− −= α ⋅ α + α ≥ > > α > .                  (6)                                    

The Weibull life distribution follows from the Burr type XII distribution as  k → ∞ , such 
that 1/ckα = . The exponential life distribution also follows from the Burr type XII 
distribution as  k → ∞ , such that 1/ck ,α =  and c 1= , and the log-logistic distribution is 
a particular case of this distribution, as for k = 1, the distribution reduces to the log-
logistic distribution. Tadikamalla (1980) has summarized relationship between Burr type 
XII distribution and various other distributions, namely, the Lomax, the Compound 
Weibull, the Weibull-Exponential, the Log-logistic, the Logistic, the Weibull and the 
Kappa family of distribution.  
 
2.4. Life distribution under ramp soak stress 

 Based on the inverse power law (see assumption (c)), we calculate the cumulative 
exposure function (t)ε at time t under stress level s  as follows: 
For 10 t t ,< ≤  we have 
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Then, cdf of the lifetime T of a unit tested under ramp soak-stress is F(t) G( (t)),= ε
where G( i ) is the assumed cdf  (4) with the scale parameter α  set equal to one and (t)ε
is the cumulative exposure (damage) model defined in (2).  
Thus, the cdf is 
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2.5. Likelihood function  

The log-likelihood of an observation at time t under type-I censoring is derived. The log-
likelihood of a single observation at time t is    

4

0 1 j j 1 5 5
j 0

L L( , ,c) ln f (t) ln(1 F ( ))+
=

= γ γ = δ + δ − η∑     
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5 1 1 2 2 3 3 4 4 5k ln 1 G (t ) G (t ) G (t ) G (t ) G ( ) .⎡ ⎤+δ − + + + + + η⎢ ⎥⎣ ⎦

                                       

(12)                                    
Let the log-likelihood of unit j be jL . The log-likelihood 0L  for n independent 

observations is     
0 1 nL L ... L .= + +  

 
2.6. Parameter estimation 

The likelihood equations are obtained by setting (15) – (17) (see Appendix A) to zero. The 
parameter values that solve “these equations summed over all test units” are the Maximum 
Likelihood estimates. As the system of likelihood equations has no closed form solution in 

0 1,  and c,γ γ therefore the maximum likelihood estimates 0 1늿,  and cγ γ  are obtained by 
maximizing (11) using NMaximize option of Mathematica 9. 
The first and second partial derivatives of (11) with respect to the model parameters for a 
single observation are given in the appendix A. 
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2.7. Fisher information matrix 

The Fisher information is obtained by taking expectations of the negative of the second 
partial derivatives of the log (likelihood) function with respect to 0 1, ,  and cγ γ . The 
Fisher information matrix for an observation is, 

2 2 2 2
0 0 1 0

2 2 2 2
0 1 0 1 1 1

2 2 2 2
0 1

E{ L / }   E{ L / } E{ L / c}

F( , , c) E{ L / } E{ L / }   E{ L / c} .

E{ L / c} E{ L / c} E{ L / c }   

⎡ ⎤−∂ ∂γ −∂ ∂γ ∂γ −∂ ∂γ ∂
⎢ ⎥
⎢ ⎥γ γ = −∂ ∂γ ∂γ −∂ ∂γ −∂ ∂γ ∂
⎢ ⎥

−∂ ∂γ ∂ −∂ ∂γ ∂ −∂ ∂⎢ ⎥⎣ ⎦

           (13)  

Since for some set of parameters { 0 1 0 1 2 1 2 3 1 2 3 4,  ,  s ,  s ,  s , ,  , ,  k,  c,  t ,  t , t , tγ γ η β β β }; 
| F |  or variance function may be negative, therefore, we choose only that parametric set 
for which | F |  0,>  and variance function is positive. Because, ‘n’ units are tested, the 
Fisher information matrix, F, for the plan with a sample of n independent units is 

singleF nF= . 

The elements of 0 1F( , ,c)γ γ  are given in Appendix A. 
 
2.8. Asymtotic variance of reliability function at used stress s0 

For any plan, the asymptotic variance-covariance matrix of the model parameters is given 
by the inverse of the corresponding Fisher information matrix, that is, 

0 0 1 0
1

0 1 1 1

0 1

ˆ ˆ ˆ ˆ ˆVar( ) Cov( , ) Cov( ,c)
ˆ ˆ ˆ ˆ ˆF Cov( , ) Var( ) Cov( ,c)
ˆ ˆ ˆ ˆ ˆCov( ,c) Cov( ,c) Var(c)

−
γ γ γ γ⎡ ⎤

⎢ ⎥= γ γ γ γ⎢ ⎥
⎢ ⎥γ γ⎣ ⎦

,                         (14)  

where F is the Fisher information matrix. 
The asymptotic variance of the reliability function of the distribution at used stress 0s  and 
pre specified mission time 0t  is 

0

ĉ k0
0 ˆ

tˆAsvar(R(t )) Asvar(1 ( ) )
e

−
γ= + , 

where 

0

ĉ k 10
ˆ ~ ~
t ˆ ˆAsvar(1 ( ) ) H F H,

e
− −

γ
′+ =

  

0

~
1

ĥ
ˆ

ĥĤ
ˆ

ĥ
ĉ

⎡ ⎤∂
⎢ ⎥∂γ⎢ ⎥
⎢ ⎥∂⎢ ⎥=

∂γ⎢ ⎥
⎢ ⎥

∂⎢ ⎥
⎢ ⎥∂⎣ ⎦

,
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0

ĉ k0
0 1 ˆ

tˆ ˆ ˆ ˆ h( , , c) = (1 ( ) ) .
e

−
γγ γ +                                                                                (15) 

 
2.9. Optimum plans 

The optimal plan consists in finding optimum stress rates 1β , 2β  and 3β   and optimum 
stress rate change points 1t , 2t , 3t and 4t by minimizing variance of reliability function 
with pre-specified mission time at normal operating conditions.   
   
 

3. NUMERICAL EXAMPLE AND SENSITIVITY ANALYSIS 
 
In this section, a hypothetical ramp soak-stress ALT experiment is considered to illustrate 
the methods described in this paper with the following data set:  

0 1 0 1 226.8,  22,  s 20,  s 30,  s =10, 15,   k 10,  c 1γ = γ = = = η = = = , t0=10,000, n=35. 

The following relationship is assumed 1
2 3 1, =2 .

2
ββ = β β One can assume some other 

relationship depending on the objective of the experiment. 
 
3.1. Optimal plans 

Optimal 1β , 1t  , 2t , 3t ,  and 4t  
are obtained by minimizing the variance of the Reliability 

function of the distribution at used stress 0s  and pre-specified mission time 0t  using the 

NMinimize option of Mathematica 9.0. They are obtained as *
1 1.t ,7116= *

2t 4.1 ,0926=
* * *
3 4 1t 7.365, t 11.18 and 7.94625.= = β =  

Thus, optimum value *
2 3.973125β = and *

3 15.8925.β =  
 
3.2. Sensitivity analysis 

To use an optimum test plan, one needs estimates of the design parameters 0 1,  and cγ γ . 
These estimates sometimes may significantly affect the values of the resulting decision 
variables; therefore, their incorrect choice may give a poor estimate of the variance of 
reliability function at design constant stress. Hence, it is important to conduct sensitivity 
analysis to evaluate the robustness of the resulting ALT plan. 
The percentage deviations of the optimal settings are measured by 

** * *PD (| Z Z | /Z ) 100,= − ×  where *Z  is the setting obtained with the given design 
parameters, and **Z  is the one obtained when the parameter is mis-specified. Table 1 
shows the optimal test plans for various deviations from the design parameter estimates. 
The results show that the optimal setting of Z is robust to the small deviations from 
baseline  parameter  estimates.  
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Table 1. Sensitivity analysis with *
1 1.t ,7116=  *

3t 7.365,=
* *
4 1t 11.18,  7.94625= β =  and Z* =5.91x10-14 

Parameter % change 1t  2t  3t  4t  Z** PD % 

0γ̂  +0.1% 1.7116 4.10926 7.365 11.18 5.49x10-14 7.11 

0γ̂  –0.1% 1.7116 4.10926 7.365 11.18 6.38x10-14 7.95 

1γ̂  +0.1% 1.7116 4.10926 7.365 11.18 6.05x10-14 2.37 

1γ̂  –0.1% 1.7116 4.10926 7.365 11.18 5.79x10-14 2.03 

ĉ  +0.1% 1.7116 4.10926 7.365 11.18 5.71x10-14 3.38 

ĉ  –0.1% 1.7116 4.10926 7.365 11.18 6.13x10-14 3.72 

 
 

4. CONCLUDING REMARKS 
 
Most of the electronic gadgets are affected by both extremely high and extremely low 
stress conditions. Ramp soak-stress ALT model incorporates Thermal cycling which 
makes a product fail quickly as it is encountered with different stresses in a short span of 
time. Thermal cycling involves applying high and low temperatures repeatedly over time. 
This paper focuses on formulation of optimal ramp soak-stress ALT plans. The optimal 
plan consist in finding out relevant experimental variables, namely, stress rates and  stress 
rate change points, by minimizing variance of reliability function with pre-specified 
mission time under normal operating conditions. The Burr type XII distribution and time-
censored data have been used for the purpose. The Burr type XII distribution has been 
found appropriate for modeling failures that occur with less frequency and also when there 
is high occurrence of early failures. This distribution has been found appropriate for 
accelerated life testing experiments. The method develop has been explained using a 
numerical example and sensitivity analysis carried out. The results of sensitivity analysis 
show that optimum plan is robust for small deviations in the true values of the model 
parameters. 
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APPENDIX A 
 
The first partial derivatives are : 
 

c cc c c4
0 1 3 31 1 2 2 4 4
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0 j 0 1 1 2 3 4

c
5 4

c
4

(G (t)) (a (t))(a (t)) (a (t)) (a (t))L c (k 1)c
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=
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1
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1 23
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The likelihood equations are obtained by setting (16) – (18) to zero. The parameter values 
that solve “these equations summed over all test units” are the Maximum Likelihood 
estimates. As the system of likelihood equations has no closed form solution in 

0 1,  and c,γ γ therefore the maximum likelihood estimates 0 1늿,  and cγ γ  are obtained by 
maximizing (12) using NMaximize option of Mathematica 9. 
The second partial derivatives are: 
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+−

∫
c 1

c c
3 3

0 0
2 1 1 2 2 2 3 3 4 1 1 2 3 4

1 2

c(1 )
(1 (a (t)) ) (1 (a (t)) )

s s         (L G (t ) ln G (t ) L G (t ) ln G (t) R (t ) R (t )))f (t)dt
s s

−
+

+ +

⎛ ⎞ ⎛ ⎞
− + − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 

 

4

0 0
2 1 1 2 2 2 3 3 4 4 2 5 1 1 2 3 3

1 2

4t

c 1
4 4

c c
4 4

0 0
2 1 1 3 3 5 2 2

1

s s(L G (t ) ln G (t ) L G (t ) ln G (t ) L G (t) R (t ) R (t ) R (t))
s s

(
a (t)

(k 1) ln(a (t))(a (t)) c( (1 )
(1 (a (t)) ) (1 (a (t)) )

s s(L (G (t ) G (t ) G (t)) ln G (t ) ln
s

η

−

⎛ ⎞ ⎛ ⎞
− + − + + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠+ −

+− +
+ +

⎛ ⎞
+ + − −⎜ ⎟

⎝ ⎠

∫

4 4 1 1 2 3 3 5
2

c 1
4 4

c k 1 c
4 4

0 0
2 1 1 3 3 5 2 2 4 4 1 1 2 3 3

1 2

G (t ) R (t ) R (t ) R (t)))f (t)dt
s

(k ln(a ( ))(a ( )) c( (1 )
(1 (a ( )) ) (1 (a ( )) )

s s(L (G (t ) G (t ) G ( )) ln G (t ) ln G (t ) R (t ) R (t ) R ( ))),                 
s s

−

+

⎛ ⎞
+ + +⎜ ⎟

⎝ ⎠

η η+ +
+ η + η

⎛ ⎞ ⎛ ⎞
+ + η − − + + + η⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (29)

 

and 
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31 2 4

1 2 3 4

1 2

1

tt t t2
3 51 2 4

2 2 2 2 2 2
0 t t t t

t t2 c 2 c
1 1 1 1 1 2

c 2 c 2
1 10 t

2
2 2

f (t)dt f (t)dtf (t)dt f (t)dt f (t)dtLE
c c c c c c

(ln G (t)) (G (t)) f (t)dt (ln(a (t))) (a (t)) f (t)dt(k 1)(
(1 (G (t)) ) (1 (a (t)) )

(ln(a (t))) (a

η⎡ ⎤∂− = + + + + +⎢ ⎥
∂⎢ ⎥⎣ ⎦

+ +
+ +

+

∫ ∫ ∫ ∫ ∫

∫ ∫

3 4

2 3

4

t tc 2 c
3 3 3 4

c 2 c 2
2 3t t

2 c 2 c
4 4 5 4 4

c 2 c 2 k
4 4t

(t)) f (t)dt (ln(a (t))) (a (t)) f (t)dt
(1 (a (t)) ) (1 (a (t)) )

(ln(a (t))) (a (t)) f (t)dt k(ln(a ( )) (a ( )))                                     (30)
(1 (a (t)) ) (1 (a ( )) )

η

+

+ +
+ +

η η+ +
+ + η

∫ ∫

∫

                          

 
These expectations (25-30) are calculated with the aid of 

{ }5 5
i

L LE (t) 1 F ( ),  E 0,  for i 0,1,  E 0.
c

⎧ ⎫∂ ∂⎧ ⎫δ = − η = = =⎨ ⎬ ⎨ ⎬∂γ ∂⎩ ⎭⎩ ⎭
 

 
 

REFERENCES 
 

H. Chernoff (1962). Optimal accelerated life designs for estimation, Technometrics, 4, 
381-408. 
 

S. Bessler, H. Chernoff, and A. W. Marshall (1962). An optimal sequential accelerated life 
test, Technometrics, 4, 367-379. 

 
G. K. Bhattacharyya and Z. Soejoeti (1989). A tampered failure rate model for step-stress 

accelerated life test, Communications in Statistics-Theory and Methods, 18, 1627-
1643. 

 
M. H. DeGroot and P. K. Goel (1979). Bayesian estimation and optimal designs in 

partially accelerated life testing, Naval Research Logistics Quarterly, 26, 223-235. 
 
W. Nelson (1980). Accelerated life testing: Step-stress models and data analysis, IEEE 

Transactions on Reliability, 29, 103-108. 
 
E. A. Elsayed (1996). Reliability engineering, Massachusets, Addison-Wesley. 
 
E. M. Prot (1948). Fatigue testing under progressive loading; A new technique for testing 

materials, Revue de Metallurgie, vol. xiv, 481-489, 1948 (in French), Translation: 
1952 Sep in WADC TR-52-148. 

 
H. S. Endicott, B. D. Hatch, and R. G. Schmer (1965). Application of the eyring model to 

capacitor aging data, IEEE Transactions on Component Parts, 12, 34- 42. 



 

 

148 Optimum time-censored ramp soak-stress ALT plan for the Burr type XII distribution

 

W. T. Starr and H. S. Endicott (1961). Progressive-stress: a new accelerated approach to 
voltage endurance, Transactions of AIEE (Power Apparatus and Systems), 80, 515- 
522. 

 
F. A. Goba (1969). Bibliography on thermal aging of electrical insulation, IEEE 

Transactions on Electrical Insulation, 4, 31-58. 
 
P. Solomon, N. Klein, and M.Albert (1976). A statistical model for step and ramp voltage 

breakdown tests in thin insulators, Thin Solid Films, 35, 32-326. 
 
C. K. Chan1990). A proportional hazard approach to correlate Sio2-breakdown voltage 

and time distributions, IEEE Transactions on Reliability, 39, 147-150. 
 
E. A. Elsayed (2013). Design of reliability test plans, In : T. Dohi and T. Nakagawa, 

Editors, Stochastic Reliability and Maintenance modeling, Essays in Honor of 
Professor Shuji Osaki on his 70th birthday, Springer Series in Reliability Engineering, 
New York,7-40. 

 
W. Nelson (1990). Accelerated testing: statistical models, test plans and data analysis, 

John Wiley & Sons, New York. 
 
W. Q. Meeker and L. A. Escobar (1998). Statistical methods for reliability data, John 

Wiley & Sons, New York. 
 
W. Nelson (2005a). A bibliography of accelerated test plans, IEEE Transactions on 

Reliability, 54, 194-197. 
 
W. Nelson (.2005b) A bibliography of accelerated test plans part II-reference, IEEE 

Transactions on Reliability, 54, 370-373. 
 
E. Gouno and N. Balakrishnan (2001). Step-stress accelerated life test, Handbook of 

Statistics-20: Advances in Reliability, Amsterdam: North-Holland, 623-639. 
 
D. S. Bai and S. W. Chung (1992). Optimal design of partially accelerated life tests for the 

exponential distribution under type-I censoring, IEEE Transactions on Reliability, 41, 
400-406. 

 
D. S. Bai and Y. R. Chun (1993). Non-parametric inferences for ramp-stress test under 

random censoring, Reliability Engineering and System Safety, 41, 217-223. 
 
D. S. Bai, Y. R. Chun and M. S. Cha (1996). Time-censored ramp tests with stress bound 

for the Weibull life distribution, IEEE Transactions on Reliability, 46, 99-107. 
 



 

149P. W. Srivastava, T. Gupta 

 

D. S. Bai, Y. R. Chun and S. W. Chung (1993). Optimal design of partially accelerated 
life tests for lognormal distribution under type-I censoring, Reliability Engineering 
and System Safety, 40, 85-92. 

 
P. W. Srivastava and R. Shukla (2008a). A log-logistic step-stress model, IEEE 

Transaction on Reliability, 57, 431-434. 
 
P. W. Srivastava and R. Shukla (2008b). Optimum log-logistic step-stress model with 

censoring. International Journal of Quality and Reliability Management, 25, 968-976. 
 
 P. W. Srivastava and R. Shukla (2009). Optimum simple ramp test for the log-logistic 

distribution with censoring, Journal of Risk and Reliability, 223, 373-379. 
 
 P. W. Srivastava and N. Mittal (2010). Optimum step-stress partially accelerated life tests 

for the truncated logistic distribution with censoring, Applied Mathematical 
Modelling, 34, 3166-3178. 

 
P. W. Srivastava and N. Mittal (2012a). Optimum multi-level ramp-stress ALT plan with 

multiple-objectives for Burr type XII distribution under type-I censoring, 
International Journal of Reliability, Quality and Safety Engineering, 19, 17 pages. 

 
 P. W. Srivastava and N. Mittal (2012b). Optimum multi-objective ramp-stress accelerated 

life test with stress upper bound for Burr type XII distribution, IEEE Transactions on 
Reliability, 61, 1030-1038.  

 
 P. W. Srivastava and N. Mittal (2012c). Optimum failure-censored step-stress PALT for 

the truncated logistic life distribution, International Journal of Reliability and 
Applications, 13 , 19-35. 

 
P. W. Srivastava and N. Mittal (2013a). Failure-censored optimum constant-stress 

partially accelerated life tests for the truncated logistic life distribution, Opinion - An 
International Journal of Business Management, 3, 41-66. 

 
 P. W. Srivastava and N. Mittal (2013b). Optimum constant-stress partially accelerated life 

tests for the truncated logistic distribution under time constraint, International 
Journal of Operational Research / Nepal, 2, 33-47. 

 
 S. J. Park and B. J. Yum (1998). Optimal design of accelerated life tests under modified 

stress loading methods, Journal of Applied Statistics, 25, 41-62. 
 
H. Fei (2000). The statistical analysis of combined data from the progressively and 

constantly life tests under power-weibull model, Journal of Mathematical 
Applications, 13, 102-106. 

 



 

 

150 Optimum time-censored ramp soak-stress ALT plan for the Burr type XII distribution

 

B. Wang (2001). Models and Statistical analysis for the mixed accelerated life test, 
Applied Math J. Chinese University Series A, 16, 101-106. 

 
N. Gao, J. M Hu, Y. M. Shi and X. Q. Qin (2008). Statistical analysis of the mixed 

accelerated life test for the type-II progressively censored sample, Journal of 
Physical Sciences, 12, 23-32. 

 
P. W. Srivastava and N. Mittal (2013c). Optimum multi-objective modified constant-stress 

ALT plan for the Burr type XII distribution with type-I censoring, Journal of Risk 
and Reliability, 227, 132-143. 

 
G. Yang (2007). Life cycle reliability engineering, John Wiley & Sons. 
 
A. A. Soliman (2005). Estimation of parameters of life from progressively censored data 

using Burr type XII model, IEEE Transactions on Reliability, 54, 34-42. 
 
L. Nilsson (1985). Estimation from accelerated life tests with increasing stress, PhD 

Dissertation, Institute of Mathematical Statistics, University of Umea in Sweden. 
 
X. K. Yin and B. Z. Sheng (1987). Some aspects of accelerated life testing by progressive-

stress, IEEE Transactions on Reliability, 36, 150-155. 
 
W. J. Zimmer, J. B. Keats and F. K. Wang (1998). The Burr XII distribution in reliability 

Analysis, Journal of Quality Technology, 30, 337-34. 
 
W. Nelson (1982). Applied Life Data Analysis, John Wiley & Sons. 
 
P. R. Tadikamalla (1980). A look at the Burr and related distributions, International 

Statistical Review, 48, 337-344. 
 
 




