• 제목/요약/키워드: Cyclic adenosine monophosphate

검색결과 101건 처리시간 0.032초

Antiobesity effects of the water-soluble fraction of the ethanol extract of Smilax china L. leaf in 3T3-L1 adipocytes

  • Kang, Yun Hwan;Kim, Kyoung Kon;Kim, Dae Jung;Choe, Myeon
    • Nutrition Research and Practice
    • /
    • 제9권6호
    • /
    • pp.606-612
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Several medicinal properties of Smilax china L. have been studied including antioxidant, anti-inflammatory, and anti-cancer effects. However, the antiobesity activity and mechanism by which the water-soluble fraction of this plant mediates its effects are not clear. In the present study, we investigated the lipolytic actions of the water-soluble fraction of Smilax china L. leaf ethanol extract (wsSCLE) in 3T3-L1 adipocytes. MATERIALS/METHODS: The wsSCLE was identified by measuring the total polyphenol and flavonoid content. The wsSCLE was evaluated for its effects on cell viability, lipid accumulation, glycerol, and cyclic adenosine monophosphate (cAMP) contents. In addition, western blot analysis was used to evaluate the effects on protein kinase A (PKA), PKA substrates (PKAs), and hormone-sensitive lipase (HSL). For the lipid accumulation assay, 3T3-L1 adipocytes were treated with different doses of wsSCLE for 9 days starting 2 days post-confluence. In other cell experiments, mature 3T3-L1 adipocytes were treated for 24 h with wsSCLE. RESULTS: Results showed that treatment with wsSCLE at 0.05, 0.1, and 0.25 mg/mL had no effect on cell morphology and viability. Without evidence of toxicity, wsSCLE treatment decreased lipid accumulation compared with the untreated adipocyte controls as shown by the lower absorbance of Oil Red O stain. The wsSCLE significantly induced glycerol release and cAMP production in mature 3T3-L1 cells. Furthermore, protein levels of phosphorylated PKA, PKAs, and HSL significantly increased following wsSCLE treatment. CONCLUSION: These results demonstrate that the potential antiobesity activity of wsSCLE is at least in part due to the stimulation of cAMP-PKA-HSL signaling. In addition, the wsSCLE-stimulated lipolysis induced by the signaling is mediated via activation of the ${\beta}$-adrenergic receptor.

Inhibitory Effects of Cordycepin (3'-Deoxyadenosine), a Component of Cordyceps militaris, on Human Platelet Aggregation Induced by Thapsigargin

  • Cho, Hyun-Jeong;Cho, Jae-Youl;Rhee, Man-Hee;Kim, Hyeong-Soo;Lee, Hyun-Sub;Park, Hwa-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1134-1138
    • /
    • 2007
  • Cordycepin (3'-deoxyadenosine) is an adenosine analog, isolated from Cordyceps militaris, and it has been used as an anticancer and anti-inflammation ingredient in traditional Chinese medicine. We investigated the effects of cordycepin (3'-deoxyadenosine) on human platelet aggregation, which was induced by thapsigargin, a tumor promoter, and determined the cytosolic free $Ca^{2+}$ levels ($[Ca^{2+}]_i$) (an aggregation-stimulating molecule) and cyclic-guanosine monophosphate (cGMP) (an aggregation-inhibiting molecule). Cordycepin inhibited thapsigargin-induced platelet aggregation in a dose-dependent manner, and it clearly reduced the levels of $[Ca^{2+}]_i$, which was increased by thapsigargin ($1\;{\mu}M$) or U46619 ($3\;{\mu}M$). Cordycepin also increased the thapsigargin-reduced cGMP levels. Accordingly, our data demonstrated that cordycepin may have a beneficial effect on platelet aggregation-mediated thrombotic diseases through the $[Ca^{2+}]_i$-regulating system such as cGMP.

Cilostazol attenuates kainic acid-induced hippocampal cell death

  • Park, Young-Seop;Jin, Zhen;Jeong, Eun Ae;Yi, Chin-ok;Lee, Jong Youl;Park, In Sung;Roh, Gu Seob
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권1호
    • /
    • pp.63-70
    • /
    • 2018
  • Cilostazol is a selective inhibitor of type 3 phosphodiesterase (PDE3) and has been widely used as an antiplatelet agent. Cilostazol mediates this activity through effects on the cyclic adenosine monophosphate (cAMP) signaling cascade. Recently, it has attracted attention as a neuroprotective agent. However, little is known about cilostazol's effect on excitotoxicity induced neuronal cell death. Therefore, this study evaluated the neuroprotective effect of cilostazol treatment against hippocampal neuronal damage in a mouse model of kainic acid (KA)-induced neuronal loss. Cilostazol pretreatment reduced KA-induced seizure scores and hippocampal neuron death. In addition, cilostazol pretreatment increased cAMP response element-binding protein (CREB) phosphorylation and decreased neuroinflammation. These observations suggest that cilostazol may have beneficial therapeutic effects on seizure activity and other neurological diseases associated with excitotoxicity.

교정적 치아이동시 부갑상선홀몬이 긴장측 치주세포의 cAMP농도에 미치는 영향 (THE EFFECT OF PARATHYROID HORMONE ON CYCLIC AMP LEVEL AND DISTRIBUTION IN PERIODONTAL CELLS IN TENS10N SITES DURING ORTHODONTIC TREATMENT)

  • ;이기수
    • 대한치과교정학회지
    • /
    • 제16권1호
    • /
    • pp.51-70
    • /
    • 1986
  • Parathyroid hormone (PTH) is known to exert its effects on bone cells through the mediation of adenosine 3', 5'-monophosphate (cAMP). Orthodontic forces have also been shown to alter the cAMP content of paradental cells, particularly the alveolar bone osteoblasts. The objective of this experiment was to determine whether a combined orthodontic treatment-PTH administration regimen would have an additive effect on cAMP content in paradental cells in sites of periodontal ligament (PDL) tension. Seven groups of 4 one year old female cats each were treated for 1,3,6,12,24 h, 7 and 14 d by tipping one maxillary canine. PTH was administered twice daily, 30u/kg. Maxillary horizontal sections were stained immunohistochemically for cAMP and the degree of cellular staining intensity was determined microphotometrically as per cent light transmittance at 600nm. Alveolar bone osteoblasts, progenitor cells, PDL fibroblasts and cementoblasts in tenion sites were measured and the data were analyzed statistically by a mixed model analysis of variance. PTH administration increased the cAMP staining of nonorthodontically treated paradental cells in comparison to cells untreated by force or hormone. Cells in PDL tension sites of PTH-treated cats demonstrated significantly darker cAMP staining than cells in non-orthodontically-treated sites. Osteoblasts demonstrated the greatest response in terms of cAMP elevation, while in PDL fibroblasts orthodontic force did not increase cAMP levels above those measured in non-stretched hormonally-treated cells. These results demonstrate that PTH increases cAMP levels in paradental cells, particullarly in osteoblasts, and that the effects of PTH and orthodontic forces on paradental target cells may approach additivity.

  • PDF

Compound 48/80과 anti-DNP IgE로 유도되는 비만세포 활성화에 대한 복분자의 억제효과 (Inhibitory Effect of Rubus Coreanus on Compound 48/80- or Anti-DNP IgE-Induced Mast Cell Activation)

  • 이광소;채옥희;송창호
    • IMMUNE NETWORK
    • /
    • 제4권2호
    • /
    • pp.100-107
    • /
    • 2004
  • Background: The fruit of Rubus coreanus (RC), a perennial herb, has been cultivated for a long time as a popular vegetable. The anti-allergy mechanism of RC is unknown. The purpose of this study is to investigate the inhibitory effect of RC on compound 48/80- or anti-DNP IgE-induced mast cell activation. Methods: For this, influences of RC on the compound 48/80-induced degranulation, histamine release, calcium influx and the change of the intracellular cAMP (cyclic adenosine-3',5' monophosphate) levels of rat peritoneal mast cells (RPMC) and on the anti-DNP IgE-induced histamine release of RPMC were observed. Results: The pretreatment of RC inhibited compound 48/80-induced degranulation, histamine release and intracelluar calcium uptake of RPMC. The anti-DNP IgE-induced histamine release of RPMC was significantly inhibited by pretreatment of RC. The RC increased the level of intracellular cAMP of RPMC, and the pretreatment of RC inhibited compound 48/80-induced decrement of intracellular cAMP of RPMC. Conclusion: These results suggest that RC contains some substances with an activity to inhibit the compound 48/80- or anti-DNP IgE-induced mast cell activitation. The inhibitory effects of RC are likely due to the stabilization of mast cells by blocking the calcium uptake and enhancing the level of intracellular cAMP.

Anti-inflammatory and utero-relaxant effect of α-bisabolol on the pregnant human uterus

  • Munoz-Perez, Victor Manuel;Ortiz, Mario I.;Ponce-Monter, Hector A.;Monter-Perez, Vicente;Barragan-Ramirez, Guillermo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권4호
    • /
    • pp.391-398
    • /
    • 2018
  • The aim of this study was to evaluate the in vitro anti-inflammatory and utero-relaxant effect of ${\alpha}$-bisabolol on the pregnant human myometrium. Samples from the pregnant human myometrium were used in functional tests to evaluate the inhibitory effect of ${\alpha}$-bisabolol (560, 860, 1,200 and $1,860{\mu}M$) on spontaneous myometrial contractions. The intracellular cyclic adenosine monophosphate (cAMP) levels generated in response to ${\alpha}$-bisabolol in human myometrial homogenates were measured by ELISA. The anti-inflammatory effect of ${\alpha}$-bisabolol was determined through the measurement of two pro-inflammatory cytokines, tumor necrosis factor-${\alpha}$ ($TNF{\alpha}$) and interleukin $(IL)-1{\beta}$, and the anti-inflammatory cytokine IL-10, in pregnant human myometrial explants stimulated with lipopolysaccharide (LPS). Forskolin was used as a positive control to evaluate the cAMP and cytokine levels. ${\alpha}$-Bisabolol was found to induce a significant inhibition of spontaneous myometrial contractions at the highest concentration level (p<0.05). ${\alpha}$-Bisabolol caused a concentration-dependent decrease in myometrial cAMP levels (p<0.05) and a concentration-dependent decrease in LPS-induced $TNF{\alpha}$ and $IL-1{\beta}$ production, while IL-10 production did not increase significantly (p>0.05). The anti-inflammatory and utero-relaxant effects induced by ${\alpha}$-bisabolol were not associated with an increase in cAMP levels in pregnant human myometrial samples. These properties place ${\alpha}$-bisabolol as a potentially safe and effective adjuvant agent in cases of preterm birth, an area of pharmacological treatment that requires urgent improvement.

Oncomodulin/Truncated Protamine-Mediated Nogo-66 Receptor Small Interference RNA Delivery Promotes Axon Regeneration in Retinal Ganglion Cells

  • Cui, Zhili;Kang, Jun;Hu, Dan;Zhou, Jian;Wang, Yusheng
    • Molecules and Cells
    • /
    • 제37권8호
    • /
    • pp.613-619
    • /
    • 2014
  • The optic nerve often suffers regenerative failure after injury, leading to serious visual impairment such as glaucoma. The main inhibitory factors, including Nogo-A, oligodendrocyte myelin glycoprotein, and myelin-associated glycoprotein, exert their inhibitory effects on axonal growth through the same receptor, the Nogo-66 receptor (NgR). Oncomodulin (OM), a calcium-binding protein with a molecular weight of an ~12 kDa, which is secreted from activated macrophages, has been demonstrated to have high and specific affinity for retinal ganglion cells (RGC) and promote greater axonal regeneration than other known polypeptide growth factors. Protamine has been reported to effectively deliver small interference RNA (siRNA) into cells. Accordingly, a fusion protein of OM and truncated protamine (tp) may be used as a vehicle for the delivery of NgR siRNA into RGC for gene therapy. To test this hypothesis, we constructed OM and tp fusion protein (OM/tp) expression vectors. Using the indirect immunofluorescence labeling method, OM/tp fusion proteins were found to have a high affinity for RGC. The gel shift assay showed that the OM/tp fusion proteins retained the capacity to bind to DNA. Using OM/tp fusion proteins as a delivery tool, the siRNA of NgR was effectively transfected into cells and significantly down-regulated NgR expression levels. More importantly, OM/tp-NgR siRNA dramatically promoted axonal growth of RGC compared with the application of OM/tp recombinant protein or NgR siRNA alone in vitro. In addition, OM/tp-NgR siRNA highly elevated intracellular cyclic adenosine monophosphate (cAMP) levels and inhibited activation of the Ras homolog gene family, member A (RhoA). Taken together, our data demonstrated that the recombinant OM/tp fusion proteins retained the functions of both OM and tp, and that OM/tp-NgR siRNA might potentially be used for the treatment of optic nerve injury.

YH18968, a Novel 1,2,4-Triazolone G-Protein Coupled Receptor 119 Agonist for the Treatment of Type 2 Diabetes Mellitus

  • Han, Taedong;Lee, Byoung Moon;Park, Yoo Hoi;Lee, Dong Hoon;Choi, Hyun Ho;Lee, Taehoon;Kim, Hakwon
    • Biomolecules & Therapeutics
    • /
    • 제26권2호
    • /
    • pp.201-209
    • /
    • 2018
  • G protein-coupled receptor 119 (GPR119) is expressed in the pancreas and gastrointestinal tract, and its activation promotes insulin secretion in the beta cells of the pancreatic islets as well as the secretion of glucagon-like peptide-1 (GLP-1) in intestinal L cells, consequently improving glucose-stimulated insulin secretion. Due to this dual mechanism of action, the development of small-molecule GPR119 agonists has received significant interest for the treatment of type 2 diabetes. We newly synthesized 1,2,4-triazolone derivatives of GPR119 agonists, which demonstrated excellent outcomes in a cyclic adenosine monophosphate (cAMP) assay. Among the synthesized derivatives, YH18968 showed cAMP=2.8 nM; in GLUTag cell, GLP-1secretion=2.3 fold; in the HIT-T15 cell, and insulin secretion=1.9 fold. Single oral administration of YH18968 improved glucose tolerance and combined treatment with a dipeptidyl peptidase 4 (DPP-4) inhibitor augmented the glucose lowering effect as well as the plasma level of active GLP-1 in normal mice. Single oral administration of YH18968 improved glucose tolerance in a diet induced obese mice model. This effect was maintained after repeated dosing for 4 weeks. The results indicate that YH18968 combined with a DPP-4 inhibitor may be an effective therapeutic candidate for the treatment of type 2 diabetes.

Vasodilator-stimulated phosphoprotein-phosphorylation by ginsenoside Ro inhibits fibrinogen binding to αIIb/β3 in thrombin-induced human platelets

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Cho, Hyun-Jeong;Rhee, Man Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.359-365
    • /
    • 2016
  • Background: Glycoprotein IIb/IIIa (${\alpha}aIIb/{\beta}_3$) is involved in platelet adhesion, and triggers a series of intracellular signaling cascades, leading to platelet shape change, granule secretion, and clot retraction. In this study, we evaluated the effect of ginsenoside Ro (G-Ro) on the binding of fibrinogen to ${\alpha}aIIb/{\beta}_3$. Methods: We investigated the effect of G-Ro on regulation of signaling molecules affecting the binding of fibrinogen to ${\alpha}aIIb/{\beta}_3$, and its final reaction, clot retraction. Results: We found that G-Ro dose-dependently inhibited thrombin-induced platelet aggregation and attenuated the binding of fibrinogen to ${\alpha}aIIb/{\beta}_3$ by phosphorylating cyclic adenosine monophosphate (cAMP)-dependently vasodilator-stimulated phosphoprotein (VASP; $Ser^{157}$). In addition, G-Ro strongly abrogated the clot retraction reflecting the intensification of thrombus. Conclusion: We demonstrate that G-Ro is a beneficial novel compound inhibiting ${\alpha}aIIb/{\beta}_3$-mediated fibrinogen binding, and may prevent platelet aggregation-mediated thrombotic disease.

홍화씨와 흰민들레 복합물의 Scopolamine 유도 기억력 손상에 대한 보호 효과 (Protective Effects of Combination of Carthamus tinctorius L. Seed and Taraxacum coreanum on Scopolamine-induced Memory Impairment in Mice)

  • 김지현;;김민조;박찬흠;이재양;신유수;조은주
    • 한국약용작물학회지
    • /
    • 제28권2호
    • /
    • pp.85-94
    • /
    • 2020
  • Background: Alzheimer's disease (AD) is caused by various factors, such as cholinergic dysfunction, regulation of neurotrophic factor expression, and accumulation of amyloid-beta. We investigated whether or not a combination of Carthamus tinctorius L. seed and Taraxacum coreanum (CT) has a protective effect on scopolamine-induced memory impairment in a mouse model. Methods and Results: Mice were orally pretreated with CT (50, 100 and 200 mg/kg/day) for 14 days, and scopolamine (1 mg/kg/day) was injected intraperitoneally before subjecting them to behavior tests. CT-administered mice showed better novel object recognition and working memory ability than scopolamine-treated control mice. In T-maze and Morris water maze tests, CT (100 and 200 mg/kg/day) significantly increased space perceptive ability and occupancy to the target quadrant, respectively. In addition, 100 and 200 mg/kg/day of CT attenuated cholinergic dysfunction through inhibition of butyryl cholinesterase in brain tissue. Furthermore, CT-administered mice showed higher cyclic adenosine monophosphate-response element-binding protein (CREB) levels and lower amyloid precursor protein (APP) levels compared to scopolamine-treated control mice. Conclusions: CT improved scopolamine-induced memory impairment through inhibition of cholinergic dysfunction, up-regulation of CREB, and down-regulation of APP. Therefore, CT could be a useful therapeutic agent for AD with protective effects on cognitive impairment.