Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0155

Oncomodulin/Truncated Protamine-Mediated Nogo-66 Receptor Small Interference RNA Delivery Promotes Axon Regeneration in Retinal Ganglion Cells  

Cui, Zhili (Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University)
Kang, Jun (Department of Ophthalmology, No. 451 Hospital of PLA)
Hu, Dan (Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University)
Zhou, Jian (Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University)
Wang, Yusheng (Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University)
Abstract
The optic nerve often suffers regenerative failure after injury, leading to serious visual impairment such as glaucoma. The main inhibitory factors, including Nogo-A, oligodendrocyte myelin glycoprotein, and myelin-associated glycoprotein, exert their inhibitory effects on axonal growth through the same receptor, the Nogo-66 receptor (NgR). Oncomodulin (OM), a calcium-binding protein with a molecular weight of an ~12 kDa, which is secreted from activated macrophages, has been demonstrated to have high and specific affinity for retinal ganglion cells (RGC) and promote greater axonal regeneration than other known polypeptide growth factors. Protamine has been reported to effectively deliver small interference RNA (siRNA) into cells. Accordingly, a fusion protein of OM and truncated protamine (tp) may be used as a vehicle for the delivery of NgR siRNA into RGC for gene therapy. To test this hypothesis, we constructed OM and tp fusion protein (OM/tp) expression vectors. Using the indirect immunofluorescence labeling method, OM/tp fusion proteins were found to have a high affinity for RGC. The gel shift assay showed that the OM/tp fusion proteins retained the capacity to bind to DNA. Using OM/tp fusion proteins as a delivery tool, the siRNA of NgR was effectively transfected into cells and significantly down-regulated NgR expression levels. More importantly, OM/tp-NgR siRNA dramatically promoted axonal growth of RGC compared with the application of OM/tp recombinant protein or NgR siRNA alone in vitro. In addition, OM/tp-NgR siRNA highly elevated intracellular cyclic adenosine monophosphate (cAMP) levels and inhibited activation of the Ras homolog gene family, member A (RhoA). Taken together, our data demonstrated that the recombinant OM/tp fusion proteins retained the functions of both OM and tp, and that OM/tp-NgR siRNA might potentially be used for the treatment of optic nerve injury.
Keywords
axon regeneration; Nogo-66 receptor; oncomodulin; retinal ganglion cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pham-Dinh, D., Allinquant, B., Ruberg, M., Della Gaspera, B., Nussbaum, J.L., and Dautigny, A. (1994). Characterization and expression of the cDNA coding for the human myelin/oligodendrocyte glycoprotein. J. Neurochem. 63, 2353-2356.
2 Schachner, M. (1994). Neural recognition molecules in disease and regeneration. Curr. Opin. Neurobiol. 4, 726-734.   DOI   ScienceOn
3 Spencer, T., and Filbin, M.T. (2004). A role for cAMP in regeneration of the adult mammalian CNS. J. Anat. 204, 49-55.   DOI   ScienceOn
4 Wang K.C., Koprivica V., Kim J.A., Sivasankaran R., Guo Y., Neve R.L., and He Z. (2002a). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941-944.   DOI   ScienceOn
5 Wang, K.C., Kim, J.A., Sivasankaran, R., Segal, R., and He, Z. (2002b). P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420, 74-78.   DOI   ScienceOn
6 Winzeler, A., and Wang, J.T. (2013). Purification and culture of retinal ganglion cells from rodents. Cold Spring Harb. Protoc. 2013, 643-652.
7 Yin, Y., Cui, Q., Li Y., Irwin, N., Fischer, D., Harvey, A.R., and Benowitz L.I. (2003). Macrophage-derived factors stimulate optic nerve regeneration. J. Neurosci. 23, 2284-2293.
8 Yin, Y., Henzl, M.T., Lorber, B., Nakazawa, T., Thomas, T.T., Jiang, F., Langer, R., and Benowitz, L.I. (2006). Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat. Neurosci. 9, 843-852.   DOI   ScienceOn
9 You, J., Kamihira, M., and Iijima, S. (1999). Enhancement of transfection efficiency by protamine in DDAB lipid vesicle-mediated gene transfer. J. Biochem. 125, 1160-1167.   DOI
10 Leon, S., Yin, Y., Nguyen, J., Irwin, N., and Benowitz, L.I. (2000). Lens injury stimulates axon regeneration in the mature rat optic nerve. J. Neurosci. 20, 4615-4626.
11 Li, Y., Irwin, N., Yin, Y., Lanser, M., and Benowitz, L.I. (2003). Axon regeneration in goldfish and rat retinal ganglion cells: differential responsiveness to carbohydrates and cAMP. J. Neurosci. 23, 7830-7838.
12 McKerracher, L., David, S., Jackson, D.L., Kottis, V., Dunn, R.J., and Braun, P.E. (1994). Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805-811.   DOI   ScienceOn
13 Lorber, B., Berry, M., and Logan, A. (2005). Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage-and lens-derived factors. Eur. J. Neurosci. 21, 2029-2034.   DOI   ScienceOn
14 MacManus, J.P. (1979). Occurrence of a low-molecular-weight calcium-binding protein in neoplastic liver. Cancer Res. 39, 3000-3005.
15 MacManus, J.P., Watson, D.C., and Yaguchi, M. (1983). The complete amino acid sequence of oncomodulin--a parvalbumin-like calcium-binding protein from Morris hepatoma 5123tc. Eur. J. Biochem. 136, 9-17.   DOI   ScienceOn
16 Mukhopadhyay, G., Doherty, P., Walsh, F.S., Crocker, P.R., and Filbin, M.T. (1994). A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757-767.   DOI   ScienceOn
17 Noren, N.K., Liu, B.P., Burridge, K., and Kreft, B. (2000). p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol. 150, 567-580.   DOI
18 Peer, D., Zhu, P., Carman, C.V., Lieberman, J., and Shimaoka, M. (2007). Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc. Natl. Acad. Sci. USA 104, 4095-4100.   DOI   ScienceOn
19 Fischer, D., Heiduschka, P., and Thanos, S. (2001). Lens-injurystimulated axonal regeneration throughout the optic pathway of adult rats. Exp. Neurol. 172, 257-272.   DOI   ScienceOn
20 Fischer, D., Petkova, V., Thanos, S., and Benowitz, L.I. (2004). Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J. Neurosci. 24, 8726-8740.   DOI   ScienceOn
21 Frade, J.M., Bovolenta P., and Rodriguez-Tebar, A. (1999). Neurotrophins and other growth factors in the generation of retinal neurons. Microsc. Res. Tech. 45, 243-251.   DOI
22 GrandPre, T., Nakamura, F., Vartanian, T., and Strittmatter, S.M. (2000). Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439-444.   DOI   ScienceOn
23 GrandPre, T., Li, S., and Strittmatter, S.M. (2002). Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417, 547-551.   DOI   ScienceOn
24 Huo, Y., Yuan, R.D., Ye, J., Yin, X.L., and Zou, H. (2011). Expression of Nogo-A and Nogo receptor in neonatal rats visual system during development. Zhonghua Yan Ke Za Zhi 47, 54-58.
25 Huo, Y., Yin, X.L., Ji, S.X., Zou, H., Lang, M., Zheng, Z., Cai, X.F., Liu, W., Chen, C.L., Zhou, Y.G., et al. (2013). Inhibition of retinal ganglion cell axonal outgrowth through the Amino-Nogo-A signaling pathway. Neurochem. Res. 38, 1365-1374.   DOI   ScienceOn
26 Inoh, Y., Furuno, T., Hirashima, N., Kitamoto, D., and Nakanishi, M. (2013). Synergistic effect of a biosurfactant and protamine on gene transfection efficiency. Eur. J. Pharm. Sci. 49, 1-9.   DOI   ScienceOn
27 Junghans, M., Kreuter, J., and Zimmer, A. (2000). Antisense delivery using protamine-oligonucleotide particles. Nucleic Acids Res. 28, E45.   DOI
28 Caroni, P., and Schwab, M.E. (1988). Antibody against myelinassociated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1, 85-96.   DOI   ScienceOn
29 Barres, B.A., Silverstein, B.E., Corey, D.P., and Chun, L.L. (1988). Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1, 791-803.   DOI   ScienceOn
30 Berry, M., Carlile, J., and Hunter, A. (1996). Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J. Neurocytol. 25, 147-170.   DOI
31 Chen, M.S., Huber, A.B., van der Haar, M.E., Frank, M., Schnell, L., Spillmann, A.A., Christ, F., and Schwab, M.E. (2000). Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434-439.   DOI   ScienceOn
32 Choi, Y.S., Lee, J.Y., Suh, J.S., Kwon, Y.M., Lee, S.J., Chung, J.K., Lee, D.S., Yang, V.C., Chung, C.P., and Park, Y.J. (2010). The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials 31, 1429-1443.   DOI   ScienceOn
33 Kurimoto, T., Yin, Y., Habboub, G., Gilbert, H.Y., Li, Y., Nakao, S., Hafezi-Moghadam, A., and Benowitz, L.I. (2013). Neutrophils express oncomodulin and promote optic nerve regeneration. J. Neurosci. 33, 14816-14824.   DOI   ScienceOn
34 Ellezam, B., Dubreuil, C., Winton, M., Loy, L., Dergham, P., Selles-Navarro, I., and McKerracher, L. (2002). Inactivation of intracellular Rho to stimulate axon growth and regeneration. Prog. Brain Res. 137, 371-380.   DOI
35 Wen, W.H., Liu, J.Y., Qin, W.J., Zhao, J., Wang, T., Jia L.T., Meng, Y.L., Gao H., Xue, C.F., Jin, B.Q., et al. (2007). Targeted inhibition of HBV gene expression by single-chain antibody mediated small interfering RNA delivery. Hepatology 46, 84-94.   DOI   ScienceOn
36 Meyer-Franke, A., Wilkinson, G.A., Kruttgen, A., Hu M., Munro, E., Hanson, M.G., Jr., Reichardt, L.F., and Barres, B.A. (1998). Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21, 681-693.   DOI   ScienceOn