DOI QR코드

DOI QR Code

Oncomodulin/Truncated Protamine-Mediated Nogo-66 Receptor Small Interference RNA Delivery Promotes Axon Regeneration in Retinal Ganglion Cells

  • Cui, Zhili (Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University) ;
  • Kang, Jun (Department of Ophthalmology, No. 451 Hospital of PLA) ;
  • Hu, Dan (Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University) ;
  • Zhou, Jian (Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University) ;
  • Wang, Yusheng (Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University)
  • Received : 2014.06.09
  • Accepted : 2014.07.07
  • Published : 2014.08.31

Abstract

The optic nerve often suffers regenerative failure after injury, leading to serious visual impairment such as glaucoma. The main inhibitory factors, including Nogo-A, oligodendrocyte myelin glycoprotein, and myelin-associated glycoprotein, exert their inhibitory effects on axonal growth through the same receptor, the Nogo-66 receptor (NgR). Oncomodulin (OM), a calcium-binding protein with a molecular weight of an ~12 kDa, which is secreted from activated macrophages, has been demonstrated to have high and specific affinity for retinal ganglion cells (RGC) and promote greater axonal regeneration than other known polypeptide growth factors. Protamine has been reported to effectively deliver small interference RNA (siRNA) into cells. Accordingly, a fusion protein of OM and truncated protamine (tp) may be used as a vehicle for the delivery of NgR siRNA into RGC for gene therapy. To test this hypothesis, we constructed OM and tp fusion protein (OM/tp) expression vectors. Using the indirect immunofluorescence labeling method, OM/tp fusion proteins were found to have a high affinity for RGC. The gel shift assay showed that the OM/tp fusion proteins retained the capacity to bind to DNA. Using OM/tp fusion proteins as a delivery tool, the siRNA of NgR was effectively transfected into cells and significantly down-regulated NgR expression levels. More importantly, OM/tp-NgR siRNA dramatically promoted axonal growth of RGC compared with the application of OM/tp recombinant protein or NgR siRNA alone in vitro. In addition, OM/tp-NgR siRNA highly elevated intracellular cyclic adenosine monophosphate (cAMP) levels and inhibited activation of the Ras homolog gene family, member A (RhoA). Taken together, our data demonstrated that the recombinant OM/tp fusion proteins retained the functions of both OM and tp, and that OM/tp-NgR siRNA might potentially be used for the treatment of optic nerve injury.

Keywords

References

  1. Barres, B.A., Silverstein, B.E., Corey, D.P., and Chun, L.L. (1988). Immunological, morphological, and electrophysiological variation among retinal ganglion cells purified by panning. Neuron 1, 791-803. https://doi.org/10.1016/0896-6273(88)90127-4
  2. Berry, M., Carlile, J., and Hunter, A. (1996). Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J. Neurocytol. 25, 147-170. https://doi.org/10.1007/BF02284793
  3. Caroni, P., and Schwab, M.E. (1988). Antibody against myelinassociated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1, 85-96. https://doi.org/10.1016/0896-6273(88)90212-7
  4. Chen, M.S., Huber, A.B., van der Haar, M.E., Frank, M., Schnell, L., Spillmann, A.A., Christ, F., and Schwab, M.E. (2000). Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 403, 434-439. https://doi.org/10.1038/35000219
  5. Choi, Y.S., Lee, J.Y., Suh, J.S., Kwon, Y.M., Lee, S.J., Chung, J.K., Lee, D.S., Yang, V.C., Chung, C.P., and Park, Y.J. (2010). The systemic delivery of siRNAs by a cell penetrating peptide, low molecular weight protamine. Biomaterials 31, 1429-1443. https://doi.org/10.1016/j.biomaterials.2009.11.001
  6. Ellezam, B., Dubreuil, C., Winton, M., Loy, L., Dergham, P., Selles-Navarro, I., and McKerracher, L. (2002). Inactivation of intracellular Rho to stimulate axon growth and regeneration. Prog. Brain Res. 137, 371-380. https://doi.org/10.1016/S0079-6123(02)37028-6
  7. Fischer, D., Heiduschka, P., and Thanos, S. (2001). Lens-injurystimulated axonal regeneration throughout the optic pathway of adult rats. Exp. Neurol. 172, 257-272. https://doi.org/10.1006/exnr.2001.7822
  8. Fischer, D., Petkova, V., Thanos, S., and Benowitz, L.I. (2004). Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation. J. Neurosci. 24, 8726-8740. https://doi.org/10.1523/JNEUROSCI.2774-04.2004
  9. Frade, J.M., Bovolenta P., and Rodriguez-Tebar, A. (1999). Neurotrophins and other growth factors in the generation of retinal neurons. Microsc. Res. Tech. 45, 243-251. https://doi.org/10.1002/(SICI)1097-0029(19990515/01)45:4/5<243::AID-JEMT8>3.0.CO;2-S
  10. GrandPre, T., Nakamura, F., Vartanian, T., and Strittmatter, S.M. (2000). Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature 403, 439-444. https://doi.org/10.1038/35000226
  11. GrandPre, T., Li, S., and Strittmatter, S.M. (2002). Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417, 547-551. https://doi.org/10.1038/417547a
  12. Huo, Y., Yuan, R.D., Ye, J., Yin, X.L., and Zou, H. (2011). Expression of Nogo-A and Nogo receptor in neonatal rats visual system during development. Zhonghua Yan Ke Za Zhi 47, 54-58.
  13. Huo, Y., Yin, X.L., Ji, S.X., Zou, H., Lang, M., Zheng, Z., Cai, X.F., Liu, W., Chen, C.L., Zhou, Y.G., et al. (2013). Inhibition of retinal ganglion cell axonal outgrowth through the Amino-Nogo-A signaling pathway. Neurochem. Res. 38, 1365-1374. https://doi.org/10.1007/s11064-013-1032-1
  14. Inoh, Y., Furuno, T., Hirashima, N., Kitamoto, D., and Nakanishi, M. (2013). Synergistic effect of a biosurfactant and protamine on gene transfection efficiency. Eur. J. Pharm. Sci. 49, 1-9. https://doi.org/10.1016/j.ejps.2013.02.001
  15. Junghans, M., Kreuter, J., and Zimmer, A. (2000). Antisense delivery using protamine-oligonucleotide particles. Nucleic Acids Res. 28, E45. https://doi.org/10.1093/nar/28.10.e45
  16. Kurimoto, T., Yin, Y., Habboub, G., Gilbert, H.Y., Li, Y., Nakao, S., Hafezi-Moghadam, A., and Benowitz, L.I. (2013). Neutrophils express oncomodulin and promote optic nerve regeneration. J. Neurosci. 33, 14816-14824. https://doi.org/10.1523/JNEUROSCI.5511-12.2013
  17. Leon, S., Yin, Y., Nguyen, J., Irwin, N., and Benowitz, L.I. (2000). Lens injury stimulates axon regeneration in the mature rat optic nerve. J. Neurosci. 20, 4615-4626.
  18. Li, Y., Irwin, N., Yin, Y., Lanser, M., and Benowitz, L.I. (2003). Axon regeneration in goldfish and rat retinal ganglion cells: differential responsiveness to carbohydrates and cAMP. J. Neurosci. 23, 7830-7838.
  19. Lorber, B., Berry, M., and Logan, A. (2005). Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage-and lens-derived factors. Eur. J. Neurosci. 21, 2029-2034. https://doi.org/10.1111/j.1460-9568.2005.04034.x
  20. MacManus, J.P. (1979). Occurrence of a low-molecular-weight calcium-binding protein in neoplastic liver. Cancer Res. 39, 3000-3005.
  21. MacManus, J.P., Watson, D.C., and Yaguchi, M. (1983). The complete amino acid sequence of oncomodulin--a parvalbumin-like calcium-binding protein from Morris hepatoma 5123tc. Eur. J. Biochem. 136, 9-17. https://doi.org/10.1111/j.1432-1033.1983.tb07698.x
  22. McKerracher, L., David, S., Jackson, D.L., Kottis, V., Dunn, R.J., and Braun, P.E. (1994). Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron 13, 805-811. https://doi.org/10.1016/0896-6273(94)90247-X
  23. Meyer-Franke, A., Wilkinson, G.A., Kruttgen, A., Hu M., Munro, E., Hanson, M.G., Jr., Reichardt, L.F., and Barres, B.A. (1998). Depolarization and cAMP elevation rapidly recruit TrkB to the plasma membrane of CNS neurons. Neuron 21, 681-693. https://doi.org/10.1016/S0896-6273(00)80586-3
  24. Mukhopadhyay, G., Doherty, P., Walsh, F.S., Crocker, P.R., and Filbin, M.T. (1994). A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron 13, 757-767. https://doi.org/10.1016/0896-6273(94)90042-6
  25. Noren, N.K., Liu, B.P., Burridge, K., and Kreft, B. (2000). p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol. 150, 567-580. https://doi.org/10.1083/jcb.150.3.567
  26. Peer, D., Zhu, P., Carman, C.V., Lieberman, J., and Shimaoka, M. (2007). Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc. Natl. Acad. Sci. USA 104, 4095-4100. https://doi.org/10.1073/pnas.0608491104
  27. Pham-Dinh, D., Allinquant, B., Ruberg, M., Della Gaspera, B., Nussbaum, J.L., and Dautigny, A. (1994). Characterization and expression of the cDNA coding for the human myelin/oligodendrocyte glycoprotein. J. Neurochem. 63, 2353-2356.
  28. Schachner, M. (1994). Neural recognition molecules in disease and regeneration. Curr. Opin. Neurobiol. 4, 726-734. https://doi.org/10.1016/0959-4388(94)90016-7
  29. Spencer, T., and Filbin, M.T. (2004). A role for cAMP in regeneration of the adult mammalian CNS. J. Anat. 204, 49-55. https://doi.org/10.1111/j.1469-7580.2004.00259.x
  30. Wang K.C., Koprivica V., Kim J.A., Sivasankaran R., Guo Y., Neve R.L., and He Z. (2002a). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941-944. https://doi.org/10.1038/nature00867
  31. Wang, K.C., Kim, J.A., Sivasankaran, R., Segal, R., and He, Z. (2002b). P75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature 420, 74-78. https://doi.org/10.1038/nature01176
  32. Wen, W.H., Liu, J.Y., Qin, W.J., Zhao, J., Wang, T., Jia L.T., Meng, Y.L., Gao H., Xue, C.F., Jin, B.Q., et al. (2007). Targeted inhibition of HBV gene expression by single-chain antibody mediated small interfering RNA delivery. Hepatology 46, 84-94. https://doi.org/10.1002/hep.21663
  33. Winzeler, A., and Wang, J.T. (2013). Purification and culture of retinal ganglion cells from rodents. Cold Spring Harb. Protoc. 2013, 643-652.
  34. Yin, Y., Cui, Q., Li Y., Irwin, N., Fischer, D., Harvey, A.R., and Benowitz L.I. (2003). Macrophage-derived factors stimulate optic nerve regeneration. J. Neurosci. 23, 2284-2293.
  35. Yin, Y., Henzl, M.T., Lorber, B., Nakazawa, T., Thomas, T.T., Jiang, F., Langer, R., and Benowitz, L.I. (2006). Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat. Neurosci. 9, 843-852. https://doi.org/10.1038/nn1701
  36. You, J., Kamihira, M., and Iijima, S. (1999). Enhancement of transfection efficiency by protamine in DDAB lipid vesicle-mediated gene transfer. J. Biochem. 125, 1160-1167. https://doi.org/10.1093/oxfordjournals.jbchem.a022399

Cited by

  1. Nogo receptor complex expression dynamics in the inflammatory foci of central nervous system experimental autoimmune demyelination vol.13, pp.1, 2016, https://doi.org/10.1186/s12974-016-0730-4
  2. Comparison of RNAi NgR and NEP1–40 in Acting on Axonal Regeneration After Spinal Cord Injury in Rat Models 2016, https://doi.org/10.1007/s12035-016-0315-3
  3. Glaucoma: Biological Trabecular and Neuroretinal Pathology with Perspectives of Therapy Innovation and Preventive Diagnosis vol.11, 2017, https://doi.org/10.3389/fnins.2017.00494
  4. Nanotechnology Applications for Glaucoma vol.5, pp.1, 2016, https://doi.org/10.1097/APO.0000000000000171
  5. Exploring Optic Nerve Axon Regeneration vol.15, pp.6, 2014, https://doi.org/10.2174/1570159x14666161227150250
  6. Optic nerve regeneration: A long view vol.37, pp.6, 2014, https://doi.org/10.3233/rnn-190960
  7. Nrn1 Overexpression Attenuates Retinal Ganglion Cell Apoptosis, Promotes Axonal Regeneration, and Improves Visual Function Following Optic Nerve Crush in Rats vol.71, pp.1, 2014, https://doi.org/10.1007/s12031-020-01627-3