• Title/Summary/Keyword: Cyclic Hardening

Search Result 154, Processing Time 0.018 seconds

Determination of Chaboche Cyclic Combined Hardening Model for Cracked Component Analysis Using Tensile and Cyclic C(T) Test Data (표준 인장시험과 반복하중 C(T) 시험을 이용한 균열해석에서의 Chaboche 복합경화 모델 결정법)

  • Hwang, Jin Ha;Kim, Hune Tae;Ryu, Ho Wan;Kim, Yun Jae;Kim, Jin Weon;Kweon, Hyeong Do
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2019
  • Cracked component analysis is needed for structural integrity analysis under seismic loading. Under large amplitude cyclic loading conditions, the change in material properties can be complex, depending on the magnitude of plastic strain. Therefore the cracked component analysis under cyclic loading should consider appropriate cyclic hardening model. This study introduces a procedure for determining an appropriate cyclic hardening model for cracked component analysis. The test material was nuclear-grade TP316 stainless steel. The material cyclic hardening was simulated using the Chaboche combined hardening model. The kinematic hardening model was determined from standard tensile test to cover the high and wide strain range. The isotropic hardening model was determined by simulating C(T) test under cyclic loading using ABAQUS debonding analysis. The suitability of the material hardening model was verified by comparing load-displacement curves of cyclic C(T) tests under different load ratios.

Effects of Hardening Models on Cyclic Deformation Behavior of Tensile Specimen and Nuclear Piping System (인장 시편 및 원자력 배관계의 반복 변형거동에 미치는 경화 모델의 영향)

  • Jeon, Da-Som;Kang, Ju-Yeon;Huh, Nam-Su;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • Recently there have been many concerns on structural integrity of nuclear piping under seismic loadings. In terms of failure of nuclear piping due to seismic loadings, an important failure mechanism is low cycle fatigue with large cyclic displacements. To investigate the effects of seismic loading on low cycle fatigue behavior of nuclear piping, the cyclic behavior of materials and nuclear piping needs to be accurately estimated. In this paper, the non-linear finite element (FE) analyses have been carried out to evaluate the effects of three different cyclic hardening models on cyclic behavior of materials and nuclear piping, such as isotropic hardening, kinematic hardening and combined hardening.

Cyclic Stress-strain Hardening Model of AC4C-T6 Alloy at Cryogenic Temperature (극저온 상태에서 AC4C-T6 의 가공 경화 모델 결정에 관한 연구)

  • Lee, Jae-Beom;Kim, Kyung-Su;Lee, Jang-Hyun;Yoo, Mi-Ji;Choung, Joon-Mo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.498-509
    • /
    • 2009
  • Present study is concerned with the simulation of plasticity models for the cyclic stressstrain behavior of aluminum alloy AC4C-T6 that can be used for primary materials of LNG cargo pump. Material model of cyclic hardening and plasticity for aluminum alloy AC4C-T6 was investigated through experiments and numerical simulations. Monotonic tensile and cyclic tension-compression test under symmetric load cycles was performed at both room temperature and cryogenic temperature of $-165^{\circ}C$. Based on the experimental data plastic hardening models were evaluated for isotropic/kinematic/combined hardening. FEA (Finite Element Analysis) models which describe the cyclic stress-strain relationship were evaluated for the simulation of plasticity. An appropriate hardening model is proposed comparing the results of FEA with those of experiments.

An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays

  • Cheng, Xinglei;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.325-343
    • /
    • 2016
  • A total stress-based bounding surface model is developed to predict the undrained behaviour of saturated soft clays under cyclic loads based on the anisotropic hardening modulus field and bounding-surface theories. A new hardening rule is developed based on a new interpolation function of the hardening modulus that has simple mathematic expression and fewer model parameters. The evolution of hardening modulus field is described in the deviatoric stress space. It is assumed that the stress reverse points are the mapping centre points and the mapping centre moves with the variation of loading and unloading paths to describe the cyclic stress-strain hysteresis curve. In addition, by introducing a model parameter that reflects the accumulation rate and level of shear strain to the interpolation function, the cyclic shakedown and failure behaviour of soil elements with different combinations of initial and cyclic stresses can be captured. The methods to determine the model parameters using cyclic triaxial compression tests are also studied. Finally, the cyclic triaxial extension and torsional shear tests are performed. By comparing the predictions with the test results, the model can be used to describe undrained cyclic stress-strain responses of elements with different stress states for the tested clays.

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(I) : Model Development (수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(I): 모델 개발)

  • 이진선;김동수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.47-56
    • /
    • 2003
  • In this paper, the cyclic soil behavior model. which can accommodate the cyclic hardening, was developed by modifying the original parallel IWAN model. In order to consider the irrecoverable plastic strain of soil. the cyclic threshold strain, above which the backbone curve deviates from the original curve, was defined and the accumulated strain was determined by summation of the strains above the cyclic threshold in the stress-strain curve with applying Masing rule on unloading and reloading curves. The isotropic hardening elements are attached to the original parallel IWAN model and the slip stresses in the isotropic hardening elements are shown to increase according to the hardening functions. The hardening functions have a single parameter to account for the cyclic hardening and are defined by the symmetric limit cyclic loading test in forms of accumulated shear strain. The model development procedures are included in this paper and the verifications of developed model are discussed in the companion paper.

Cyclic Hardening and Degradation Effects on Site Response during an Earthquake (지진시 지반의 반복경화/연화 현상에 의한 부지응답 특성 영향 연구)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.65-71
    • /
    • 2008
  • A one-dimensional site response analysis program (KODSAP) was developed using cyclic soil behavior model by using the modified parallel IWAN model. The model is able to predict the cyclic hardening and degradation of soil through the adjustment of the internal slip stresses of its elements beyond the cyclic threshold, and satisfies Bauschinger's effect and the Masing rule in terms of its own behavior characteristics. The program (KODSAP) used the direct integration method in the time domain. The elasticity of the base rock was considered as a viscous damper boundary condition. The effects of cyclic hardening or degradation of soil on site response analysis were evaluated through parametric studies. Three types of analyses were performed to compare the effect of analysis and cyclic parameter on site response. The first type was equivalent linear analysis, the second was nonlinear analysis, and a third was nonlinear analysis using the cyclic hardening or degradation model.

Efficient determination of combined hardening parameters for structural steel materials

  • Han, Sang Whan;Hyun, Jungho;Cho, EunSeon;Lee, Kihak
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.657-669
    • /
    • 2022
  • Structural materials can experience large plastic deformation under extreme cyclic loading that is caused by events like earthquakes. To evaluate the seismic safety of a structure, accurate numerical material models should be used. For a steel structure, the cyclic strain hardening behavior of structural steel should be correctly modeled. In this study, a combined hardening model, consisting of one isotropic hardening model and three nonlinear kinematic hardening models, was used. To determine the values of the combined hardening model parameters efficiently and accurately, the improved opposition-based particle swarm optimization (iOPSO) model was adopted. Low-cycle fatigue tests were conducted for three steel grades commonly used in Korea and their modeling parameters were determined using iOPSO, which was first developed in Korea. To avoid expensive and complex low cycle fatigue (LCF) tests for determining the combined hardening model parameter values for structural steel, empirical equations were proposed for each of the combined hardening model parameters based on the LCF test data of 21 steel grades collected from this study. In these equations, only the properties obtained from the monotonic tensile tests are required as input variables.

Modulus degradation of concrete exposed to compressive fatigue loading: Insights from lab testing

  • Song, Zhengyang;Konietzky, Heinz;Cai, Xin
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.281-296
    • /
    • 2021
  • This article analyzed the modulus degradation of concrete subjected to multi-level compressive cyclic loading. The evolution of secant elastic modulus is investigated based on measurements from top loading platen and LVDT in the middle part of concrete. The difference value of the two secant elastic moduli is reduced when close to failure and could be used as a fatigue failure precursor. The fatigue hardening is observed for concrete during cyclic loading. When the maximum stress is smaller the fatigue hardening is more obvious. The slight increase of maximum stress will lead to the "periodic hardening". The tangent elastic modulus shows a specific "bowknot" shape during cyclic loading, which can characterize the hysteresis of stress-strain and is influenced by the cyclic loading stresses. The deterioration of secant elastic modulus acts a similar role with respect to the P-wave speed during cyclic loading, can both characterize the degradation of the concrete properties.

Simulation of Ratcheting Behavior under Stress Controlled Cyclic Loading using Two-Back Stress Hardening Constitutive Relation (이중 후방 응력 경화 모델을 이용한 주기 하중에서의 래쳐팅 거동 현상 연구)

  • Hong, S.I.;Hwang, D.S.;Yun, S.J.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2008
  • In the present work, the ratcheting behavior under uniaxial cyclic loading is analyzed. A comparison between the published and the results from the present model is also included. In order to simulate the ratcheting behavior, Two-Back Stress model is proposed by combining the non-linear Armstrong-Frederick rule and the non-linear Phillips hardening rule based on kinematic hardening equation. It is shown that some ratcheting behaviors can be obtained by adjusting the control material parameters and various evolutions of the kinematic hardening parameter can be obtained by means of simple combination of hardening rules using simple rule of mixtures. The ultimate back stress is also derived for the present combined kinematic hardening models.

Simulating Nuetron Irradiation Effect on Cyclic Deformation and Failure Behaviors using Cold-worked TP304 Stainless Steel Base and Weld Metals (냉간가공된 TP304 스테인리스강 모재와 용접재를 이용한 반복 변형 및 손상 거동에 미치는 중성자조사 영향 모사)

  • Kim, Sang Eun;Kim, Jin Weon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.58-67
    • /
    • 2020
  • This study presents cyclic stress-strain and tensile test results at room temperature (RT) and 316℃ using cold-worked TP304 stainless steel base and weld metals. By comparing the cyclic hardening/softening behavior and failure cycle of cold-worked materials with those of irradiated austenitic stainless steels, the feasibility of simulating the irradiation effect on cyclic deformation and failure behaviors of TP304 stainless steel base and weld metals was investigated. It was found that, in the absence of strain-induced martensite trasformation, cold-working could properly simulate the change in cyclic hardening/softening behavior of TP304 stainless steel base and weld metals due to neutron irradiation. It was also recognized that cold-working could adequately simulate the reduction in failure cycles of TP304 stainless steel base and weld metals due to neutron irradition in the low-cycle fatigue region.