• Title/Summary/Keyword: Cutting movement

Search Result 126, Processing Time 0.028 seconds

Effects of Landing Height and Knee Joint Muscle Fatigue on Movement of the Lower Extremity during Cutting After Landing (착지 높이와 무릎관절 근육 피로가 착지 후 방향 전환 동작 시 하지관절의 움직임에 미치는 영향)

  • Kim, You-Kyung;Youm, Chang-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.311-322
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the effects of landing height and knee joint muscle fatigue on the movement of the lower extremity during cutting after landing. Method : Subjects included 29 adults (age: $20.83{\pm}1.56years$, height: $172.42{\pm}9.51cm$, weight: $65.07{\pm}10.18kg$). The subjects were asked to stand on their dominant lower limb on jump stands that were 30 and 40 cm in height and jump from each stand to land with the dominant lower limb on a force plate making a side step cutting move at a $45^{\circ}$ angle with the non-dominant lower limb. The fatigue level at 30% of the knee extension peak torque using an isokinetic dynamometer. Results : The results showed that the difference of landing height increased maximum range of motion and angular velocity of hip, knee, and ankle joints in the sagittal plane, and in the angular velocity of motion of the hip joint in the sagittal plane. The maximum range of motion of the knee joint in the sagittal plane and the frontal plane decreased on landing from both heights after the fatigue exercise. The angular velocity of the hip joint in the sagittal plane, and the maximum range of motion of the hip joint in the transverse plane decreased for both landing heights after the fatigue exercise. The angular velocity of the hip joint in the frontal plane decreased for the 30 cm landing height after the fatigue exercise. On the other hand, the angular velocity and maximum range of motion of the ankle joint in the sagittal plane for both landing heights, and the angular velocity and maximum range of motion of the ankle joint in the frontal plane increased on landing from the 40 cm height after the fatigue exercise. Conclusion : Different landing heights of 30 and 40 cm and 30% fatigue of peak torque of knee extensor found a forefoot and stiff landing strategy, when cutting after landing. These results might be due to decline in the shock absorption capability of the knee joint and the movement capability related to cutting while increasing the contribution of the ankle joint, which may cause increased ankle joint injuries.

The Research of Suitability for Introduction of 6 Sigma to the Service Industry - Based on Department store Industry - (서비스산업의 6시그마 도입 적합성 연구 - 백화점 업종을 중심으로 -)

  • 이종관
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2000.10a
    • /
    • pp.187-205
    • /
    • 2000
  • 6 Sigma movement is the quality innovation activity which Motorola, a nineteen eighties' top-ranking American company of electronics and communication, has started to survive the Japanese companies' frightening gami-gaze. In early days, it's just applicated for reducing customers' complain by eliminations inferior goods centering round producing activity and filling up the competitive market's demand for price and delivery deadline. Nowaday, 6 Sigma application has created a boom extending to a company's most activity fields without any exact scrutiny of 6 Sigma. Although 6 Sigma movement starts from the question of what customers want not by cutting off the inferiority rate but by cutting out causes of producing inferior goods, the service industry has a special character that makes it difficult to compute the level of Sigma. Thus this research examines suitability for introduction of 6 Sigma to the Service Industry.

  • PDF

Prediction and analysis of the machined surface accuracy in end milling (엔드 밀링의 가공 표면 정밀도 예측과 해석)

  • 고정훈;윤원수;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1018-1022
    • /
    • 2000
  • Enhancement of the accuracy of products and productivity are essential to survive in a global industrial competition. This trend requires tighter dimensional tolerance specifications. To actively cope with the rapid change of the workpiece material and cutter geometry, a general method that can predict and analyze the machined surface is needed. Surface generation model for the prediction of the topography of machined surfaces is developed based on cutting force model considering cutter deflection and runout. This paper presents the method that constructs the three-dimensional machined surface error following the movement of a cutter, irrespective of the variations of cutting conditions. In addition, the effects of the cutting forces and the kink shape on the machined surface are extensively investigated.

  • PDF

Lower Extremity Kinematics and Muscle Activity of Cutting Movement in Older Parkinson's Diseases (파킨슨 환자들의 방향전환 보행 향상을 위한 하지의 운동학 및 근육 활동 규명)

  • Kim, Mi-Young;Kim, Jong-Duk
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.257-264
    • /
    • 2009
  • The purpose of this study was to investigate the lower extremity kinematics and muscle activities of adductor longus(AL), gluteus medius(GME), gluteus maximus(GMA), biceps femoris(BF), rectus femoris(RF), gastrocnemius(GA), and tibialis anterior(TA) using three dimensional and Noraxon 8 channels EMG system during turn 0, 60, 90 and 120 degrees in patients with Parkinson's disease. Seven parkinson's patients and five healthy subjects were participated in the study. Participants with Parkinson's disease demonstrated significant differences in reduction of stride length and stride width. Also, they showed ill difference in muscle activities. The strength and balance of the lower extremity muscles may help to improve cutting movement and to prevent falling in parkinson's patients.

Displace Measurement of the Top of Bridge Pier Using Long gauge Fiber Optic Sensor (긴 게이지길이 광섬유 FBG센서를 이용한 교각상부 거동 혹정)

  • Ki Ki-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.71-76
    • /
    • 2006
  • In this paper, a long gauge Fiber Bragg Grating (FBG) sensor system is described and long gauge FBGs are well, suited for measuring the upper parts of the bridge piers under the extremely severe movement conditions. In the experiments, we used more than 30m long FBG sensors to measure the movement of top part of the bridge piers which are separated from the main bridge by cutting the decks. With the actuator, the deck and girders were pushed and released. We checked the movement of the top of the pier while releasing the pressure of the actuator with the long gauge fiber sensor. In order to measure the movement of the upper part of the pier, the reference point must be outside of the pier. Using the optical fiber sensors, one end of the sensor is attached to the top of the pier and the other end is attached to the bottom of the next pier. The fiber sensors showed good response to the release loading and we could calculate the movement of the top part of the pear.

  • PDF

Pattern Development of Skate Pants Allowing for Dynamic Movement and Postures (인체의 동작을 고려한 스케이트 팬츠 패턴 개발)

  • Jeong, Yeon-Hee
    • Korean Journal of Human Ecology
    • /
    • v.17 no.1
    • /
    • pp.115-126
    • /
    • 2008
  • The construction of an athlete's tight-fitting garments is very important to the wearer in terms of athletic performance. Therefore pattern development of tight-fitting garments must allow for the full range of human movement and postures. In this study the relationship between the construction of a skate pants pattern and clothing fitting was explored with the aim of improving the comfort of the clothing. The four male subjects were university students between the ages of 20 to 24. Subjective wear sensations of the experimental garments were rated using a seven-point Likert scale on four consecutive days. While wearing the garments, subjects were asked to take five different postures including waist flexion, sitting and others. A Likert-type scale was used for the evaluation, with 7 points indicating the best fit in tight-fitting pants. Results showed differences in the front-rise length and back-rise length between basic pants(A) and modified pants(B,C,D) were -5.16cm and +5.64cm. Comparing the basic pants pattern(A) with modified pants pattern(B), the latter was superior to basic pants(A) in terms of pressure sensation and closeness of fit, but there was no significant difference. Among the four tight-fitting skate pants, A and B pants were superior to the others in terms of fitting and stability of waist and hip sections. In the case of the skate pants, the number of cutting lines in the pattern had an influence on clothing comfort. A minimum cutting line for tight skate pants was better than a maximum cutting line in terms of clothing comfort.

A Study on the Influence of Nonlinearity Coefficients in Air-Bearing Spindle Parametric Vibration

  • Chernopyatov, Y.A.;Lee, C.M.;Chung, W.J.;Dolotov, K.S.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2005
  • The development of the high-efficiency machine-tools equipment and new cutting tool materials with high hardness, heat- and wear-resistance has opened the way to application of high-speed cutting process. The basic argument of using of high-speed cutting processes is the reduction of time and the respective increase of machining productivity. In this sense, the spindle units may be regarded as one of the most important units, directly affecting many parameters of high-speed machining efficiency. One of the possible types of spindle units for high-speed cutting is the air-bearing type. In this paper, we propose the mathematical model of the dynamic behavior of the air-bearing spindle. To provide the high-level of speed capacity and spindle rotation accuracy we need the adequate model of "spindle-bearings" system. This model should consider characteristics of the interactions between system components and environment. To find the working characteristics of spindle unit we should derive the equations of spindle axis movement under the affecting factors, and solve these equations together with equations which describe the behavior of lubricant layer in bearing (bearing stiffness equations). In this paper, the three influence coefficients are introduced, which describe the center of spindle mass displacement, angle of shaft rotation around the axes under the unit force application and that under the unit torque application. These coefficients are operated in the system of differential equations, which describes the spindle axis spatial movement. This system is solved by Runge-Kutta method. Obtained trajectories and amplitude-frequency characteristics were then compared to experimental ones. The analysis shows good agreement between theoretical and experimental results, which confirms that the proposed model of air-bearing spindle is correctis correct

Geometry Cutting Solution using Vector Dot Product (벡터 내적연산을 이용한 지오메트리 절삭 솔루션)

  • Hwang, Min Sik
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1337-1344
    • /
    • 2016
  • As the visual effect frequently used in movies or animations, special effects are well suited for the creation of buildings or materials' destruction and collapse scenes. With the relevant programs developing technologically, the adoption of a real-time physically based-system makes it possible to realistically express dynamic simulations. In the large scale, the visual expression of such effects of destroying is satisfying enough, but most common programs of those effects fail to maximize visual effect generated with the cutting of small materials. Besides, to perform a heavy simulation process needs high-performance hardware and programs, where high costs would become a serious issue. For this reason, this paper suggests a solution optimized for the effect of small materials-cutting. The progress of each step shows technologies which trace movement with the state of the completion of the character's motions and then cut the material in real-time, finally led to the very realistic visual effect. Besides, using vector inner calculation to follow the motions of object and to realize cutting effect, this study provides an experiment that constructs visual effect for visualization from the basis of mathematical algorithm and it would be certainly as an educational material used for further researches.

Some Observations on SOIL SOIL-Failure By Linear Blade Using " Stilt" System

  • Mandang, Tinke;Nishimura, Isao
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1073-1087
    • /
    • 1993
  • Many investigations have been carried out concerning tillage tool performance, including energy requirement . Since the performance of tillage could also be evaluated through the change of soil , then it is necessary to investigate the soil cutting process and the pattern of soil failure. This study was conducted using indoor soil bin, STILT (Soil Tillage Tool Interaction) system. The result shows that the soil bin experiments could provide the clear understandings about phenomena of soil failure. The movement of sil , the successive failures was clearly visualized. The relations between the horizontal and vertical forces to the linear motion blade, the shear force on the shear plane which devides soil layer into several segments were indicated by the fluctuation/vibration of the recorded resistance and forces. The results show that the horizontal force(Fx) and vertical force (Fz) develope their frequencies as the change of velocity of blade (10, 20, 40 mm/sec) for each cutting angle (35, 45, 60 degrees). Resultant force of Fx and Fz are much influenced by the cutting angle.

  • PDF

The Efficient 5-Axis Heel cutting Using Ruled Surface (Ruled Surface를 이용한 효율적인 5축 Heel cutting)

  • 공영식;이희관;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.862-867
    • /
    • 1997
  • A 5-axis NC milling technology is presented on ruled surface. Problems in 5-axis NC machining are such as tool interference,tool collision and change of tool attitude,etc. The change of tool attitude causes rotation of cutter and variation of feedrate to overcut part surface. This poor control of tool attitude is the primary problem in multi-axis NC milling. This paper observes ruled surface for control of tool attitude. Ruled surface is composed of directrix and ruling, line of constant magnitude. Directrix corresponds to points on part surface and Ruling cutting tool. Trajectory of tool movement corresponds to ruled surface.

  • PDF