• Title/Summary/Keyword: Customer-based Recommendation

Search Result 190, Processing Time 0.026 seconds

Design of Web Recommendation Service Based on Consumer's Sensibility (고객 감성에 기반한 웹 추천 서비스 설계)

  • Jeon, Yong-Woong;Kim, Jae-Kuk;Park, Ji-Young;Cho, Am
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.85-94
    • /
    • 2008
  • Internet shopping has been getting more rousing due to extension of supply with PC(personal computer) and a rapid rise of use of internet. Some companies have been continually researching in how to serve individuals with each ordered information, which aimed at getting ordinary customers to induce to be loyal customers. For that, there is progress of a service of a web-recommendation which considers individual attribution. This study is suggested a method which is a service of the web-recommendation by access to sensibility ergonomics approach. Previous studies established that service had a weak point. It did not manage to realize new needs of customers. Proposed service of the web-recommendation has been designed, which preferentially propose goods included customer's sensibility to the customer who wants it. This study is expected that it will encourage a rise of products' purchasing power of customers, make an increase in a profit of both sellers and people who operate electric commercial and satisfaction of customers will go up in the same. Also, products accord with sensibility of customers will be recommended customers by the suggested service of the web-recommendation. In addition, there will be a decline of time-consuming about making a choice among some products.

Forecasting of Customer's Purchasing Intention Using Support Vector Machine (Support Vector Machine 기법을 이용한 고객의 구매의도 예측)

  • Kim, Jin-Hwa;Nam, Ki-Chan;Lee, Sang-Jong
    • Information Systems Review
    • /
    • v.10 no.2
    • /
    • pp.137-158
    • /
    • 2008
  • Rapid development of various information technologies creates new opportunities in online and offline markets. In this changing market environment, customers have various demands on new products and services. Therefore, their power and influence on the markets grow stronger each year. Companies have paid great attention to customer relationship management. Especially, personalized product recommendation systems, which recommend products and services based on customer's private information or purchasing behaviors in stores, is an important asset to most companies. CRM is one of the important business processes where reliable information is mined from customer database. Data mining techniques such as artificial intelligence are popular tools used to extract useful information and knowledge from these customer databases. In this research, we propose a recommendation system that predicts customer's purchase intention. Then, customer's purchasing intention of specific product is predicted by using data mining techniques using receipt data set. The performance of this suggested method is compared with that of other data mining technologies.

A Match-Making System Considering Symmetrical Preferences of Matching Partners (상호 대칭적 만족성을 고려한 온라인 데이트시스템)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.177-192
    • /
    • 2012
  • This is a study of match-making systems that considers the mutual satisfaction of matching partners. Recently, recommendation systems have been applied to people recommendation, such as recommending new friends, employees, or dating partners. One of the prominent domain areas is match-making systems that recommend suitable dating partners to customers. A match-making system, however, is different from a product recommender system. First, a match-making system needs to satisfy the recommended partners as well as the customer, whereas a product recommender system only needs to satisfy the customer. Second, match-making systems need to include as many participants in a matching pool as possible for their recommendation results, even with unpopular customers. In other words, recommendations should not be focused only on a limited number of popular people; unpopular people should also be listed on someone else's matching results. In product recommender systems, it is acceptable to recommend the same popular items to many customers, since these items can easily be additionally supplied. However, in match-making systems, there are only a few popular people, and they may become overburdened with too many recommendations. Also, a successful match could cause a customer to drop out of the matching pool. Thus, match-making systems should provide recommendation services equally to all customers without favoring popular customers. The suggested match-making system, called Mutually Beneficial Matching (MBM), considers the reciprocal satisfaction of both the customer and the matched partner and also considers the number of customers who are excluded in the matching. A brief outline of the MBM method is as follows: First, it collects a customer's profile information, his/her preferable dating partner's profile information and the weights that he/she considers important when selecting dating partners. Then, it calculates the preference score of a customer to certain potential dating partners on the basis of the difference between them. The preference score of a certain partner to a customer is also calculated in this way. After that, the mutual preference score is produced by the two preference values calculated in the previous step using the proposed formula in this study. The proposed formula reflects the symmetry of preferences as well as their quantities. Finally, the MBM method recommends the top N partners having high mutual preference scores to a customer. The prototype of the suggested MBM system is implemented by JAVA and applied to an artificial dataset that is based on real survey results from major match-making companies in Korea. The results of the MBM method are compared with those of the other two conventional methods: Preference-Based Matching (PBM), which only considers a customer's preferences, and Arithmetic Mean-Based Matching (AMM), which considers the preferences of both the customer and the partner (although it does not reflect their symmetry in the matching results). We perform the comparisons in terms of criteria such as average preference of the matching partners, average symmetry, and the number of people who are excluded from the matching results by changing the number of recommendations to 5, 10, 15, 20, and 25. The results show that in many cases, the suggested MBM method produces average preferences and symmetries that are significantly higher than those of the PBM and AMM methods. Moreover, in every case, MBM produces a smaller pool of excluded people than those of the PBM method.

Deep Neural Network Models to Recommend Product Repurchase at the Right Time : A Case Study for Grocery Stores

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.2
    • /
    • pp.73-90
    • /
    • 2018
  • Despite of increasing studies for product recommendation, the recommendation of product repurchase timing has not yet been studied actively. This study aims to propose deep neural network models usingsimple purchase history data to predict the repurchase timing of each customer and compare performances of the models from the perspective of prediction quality, including expected ROI of promotion, variability of precision and recall, and diversity of target selection for promotion. As an experiment result, a recurrent neural network (RNN) model showed higher promotion ROI and the smaller variability compared to MLP and other models. The proposed model can be used to develop a CRM system that can offer SMS or app-based promotionsto the customer at the right time. This model can also be used to increase sales for product repurchase businesses by balancing the level of ordersas well as inducing repurchases by customers.

Collaborative Recommendations using Adjusted Product Hierarchy : Methodology and Evaluation (재구성된 제품 계층도를 이용한 협업 추천 방법론 및 그 평가)

  • Cho, Yoon-Ho;Park, Su-Kyung;Ahn, Do-Hyun;Kim, Jae-Kyeong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.2
    • /
    • pp.59-75
    • /
    • 2004
  • Recommendation is a personalized information filtering technology to help customers find which products they would like to purchase. Collaborative filtering works by matching customer preferences to other customers in making recommendations. But collaborative filtering based recommendations have two major limitations, sparsity and scalability. To overcome these problems we suggest using adjusted product hierarchy, grain. This methodology focuses on dimensionality reduction and uses a marketer's specific knowledge or experience to improve recommendation quality. The qualify of recommendations using each grain is compared with others by several experimentations. Experiments present that the usage of a grain holds the promise of allowing CF-based recommendations to scale to large data sets and at the same time produces better recommendations. In addition. our methodology is proved to save the computation time by 3∼4 times compared with collaborative filtering.

A Study of Recommendation System Using Association Rule and Weighted Preference (연관규칙과 가중 선호도를 이용한 추천시스템 연구)

  • Moon, Song Chul;Cho, Young-Sung
    • Journal of Information Technology Services
    • /
    • v.13 no.3
    • /
    • pp.309-321
    • /
    • 2014
  • Recently, due to the advent of ubiquitous computing and the spread of intelligent portable device such as smart phone, iPad and PDA has been amplified, a variety of services and the amount of information has also increased fastly. It is becoming a part of our common life style that the demands for enjoying the wireless internet are increasing anytime or anyplace without any restriction of time and place. And also, the demands for e-commerce and many different items on e-commerce and interesting of associated items are increasing. Existing collaborative filtering (CF), explicit method, can not only reflect exact attributes of item, but also still has the problem of sparsity and scalability, though it has been practically used to improve these defects. In this paper, using a implicit method without onerous question and answer to the users, not used user's profile for rating to reduce customers' searching effort to find out the items with high purchasability, it is necessary for us to analyse the segmentation of customer and item based on customer data and purchase history data, which is able to reflect the attributes of the item in order to improve the accuracy of recommendation. We propose the method of recommendation system using association rule and weighted preference so as to consider many different items on e-commerce and to refect the profit/weight/importance of attributed of a item. To verify improved performance of proposing system, we make experiments with dataset collected in a cosmetic internet shopping mall.

A study on the individual and group behavior based customer profile model for personalized products recommendation (개인화된 제품 추천을 위한 개인과 그룹 행동에 기반한 고객 프로파일 모델 연구)

  • Park Yu-Jin;Jang Geun-Nyeong;Jeong Yu-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1812-1818
    • /
    • 2006
  • 일대일 마케팅을 실현하고 정보 과다 문제의 해결책으로 등장한 추천시스템의 다양한 기법을 적용하기 위해서는 고객의 관심 분야에 대한 정보인 고객 프로파일의 정의가 선행되어야 할 것으로 판단된다. 본 연구에서는 고객에게 개인화된 정보를 추천하기 위해 고객 개인의 행동과 그 고객이 속한 그룹의 행동 정보에 기반한 고객 프로파일 모델인 IGBCPM(Individual Group Behavior Customer Profile Model)을 제시한다.

  • PDF

Improvement of Item-Based Collaborative Filtering by Applying Each Customer's Purchase Patterns in Offline Shopping Malls (오프라인 쇼핑몰에서 고객의 과거 구매 패턴을 활용한 아이템 기반 협업필터링 성능 개선에 관한 연구)

  • Jeong, Seok Bong
    • Journal of Information Technology Applications and Management
    • /
    • v.24 no.4
    • /
    • pp.1-12
    • /
    • 2017
  • Item-based collaborative filtering (IBCF) is an important technology that is widely used in recommender system of online shopping malls. It uses historical information to compute item-item similarity and make predictions. However, in offline shopping each customer's purchasing pattern can be occurred continuously and repeatedly due to time and space constraints contrast to online shopping. Those facts can make IBCF to have limitations from being applied to offline shopping malls directly. In order to improve the quality of recommendations made by IBCF in offline shopping mall, we propose an ensemble approach that considers both item-item similarity of IBCF and each customer's purchasing patterns which are modeled by item networks. Our experimental results show that this approach produces recommendation results superior to those of existing works such as pure IBCF or bestseller approaches.

Development of Web-based Intelligent Recommender Systems using Advanced Data Mining Techniques (개선된 데이터 마이닝 기술에 의한 웹 기반 지능형 추천시스템 구축)

  • Kim Kyoung-Jae;Ahn Hyunchul
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.3
    • /
    • pp.41-56
    • /
    • 2005
  • Product recommender system is one of the most popular techniques for customer relationship management. In addition, collaborative filtering (CF) has been known to be one of the most successful recommendation techniques in product recommender systems. However, CF has some limitations such as sparsity and scalability problems. This study proposes hybrid cluster analysis and case-based reasoning (CBR) to address these problems. CBR may relieve the sparsity problem because it recommends products using customer profile and transaction data, but it may still give rise to scalability problem. Thus, this study uses cluster analysis to reduce search space prior to CBR for scalability Problem. For cluster analysis, this study employs hybrid genetic and K-Means algorithms to avoid possibility of convergence in local minima of typical cluster analyses. This study also develops a Web-based prototype system to test the superiority of the proposed model.

  • PDF

Deep Learning-Based Personalized Recommendation Using Customer Behavior and Purchase History in E-Commerce (전자상거래에서 고객 행동 정보와 구매 기록을 활용한 딥러닝 기반 개인화 추천 시스템)

  • Hong, Da Young;Kim, Ga Yeong;Kim, Hyon Hee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.6
    • /
    • pp.237-244
    • /
    • 2022
  • In this paper, we present VAE-based recommendation using online behavior log and purchase history to overcome data sparsity and cold start. To generate a variable for customers' purchase history, embedding and dimensionality reduction are applied to the customers' purchase history. Also, Variational Autoencoders are applied to online behavior and purchase history. A total number of 12 variables are used, and nDCG is chosen for performance evaluation. Our experimental results showed that the proposed VAE-based recommendation outperforms SVD-based recommendation. Also, the generated purchase history variable improves the recommendation performance.