• Title/Summary/Keyword: Curtain Wall Engineering

Search Result 123, Processing Time 0.036 seconds

Comparative Studies on Lighting Environment and Energy Performance depending on the Transmittance of Window and Slat Angle of Blind (창호의 투과율과 블라인드 슬랫각도에 따른 빛환경 및 에너지성능 비교 연구)

  • Sim, Se-Ra;Yoon, Jong-Ho;Shin, U-Cheul
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.256-263
    • /
    • 2011
  • Recently, curtain wall structure is constructed according to increasing high rise building. Glass is usually used in opening of curtain wall structure and window area ratio is finally increased. Excessive Daylighting and solar radiation by large window area ratio cause discomfort glare and add to cooling load in the case of office that is heavy on lighting and cooling. Therefore, this study suggests to use low transmittance window for solve those problems. Indoor lighting environment and building energy performance were analyzed by increasing transmittance from 10% to 90% and comparing fixed venetian blind. Consequently, the range of transmittance that is possible to daylighting and prevent discomfort glare. Secondary energy consumption is efficient in the case that transmittance is the range of from 20% to 50%, primary energy consumption is nice on from 20% to 40%. If those result put together, the range of window transmittance from 30% to 50% is proper in the office in lighting environment and energy consumption aspects.

  • PDF

A Comparative Analysis of the Energy Load due to Window Area Ratio of Domestic Public Buildings

  • An, Kwang-Ho;Hyun, Eun-Mi;Kim, Yong-Sik
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • In the case of public buildings, fast communication and transparency in the administration and the public, as well as ensuring visibility and lighting performance using a glass curtain wall is symbolically expressed through the transparent glass skin. This study is a simulation in order to derive the basic data for the establishment of the improvement of the heating and cooling load analysis according to the window area ratio changes with respect to the high effectiveness of the government's large public building energy consumption analysis and green building certification system of guidelines was analyzed by a change in the energy load. Glass curtain wall is light and visibility, the symbolic meaning of communication, etc., but is widely used in a variety of characteristics, in terms of energy consumption being disadvantaged sheath plan should have been. Design, including the Atrium, is much less energy than energy consumption by the window area ratio. Thus, while compliance with design guide lines, the atrium and I like the burden of a large space ratio and energy load consists of only glass suggest that require more research on that given in the guidelines.

A Study on Simulation for Decreasing Energy Demand According to Window-to-Wall Ratio and Installation Blind System in Building (블라인드 도입과 창면적비에 따른 표준건축물의 에너지 수요 저감에 대한 시뮬레이션 연구)

  • Kang, Suk-Min;Lee, Tae-Kyu;Kim, Jeong-Uk
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.531-542
    • /
    • 2018
  • Building energy demands have highly risen in modern society; thus, It is necessary to reduce building energy demands especially commercial buildings adopting a curtain wall architecture. Curtain wall architectures have a high ratio of windows which is a vulnerable in heat insulations as cladding. In order to complement insulation performance of windows in these buildings, there are various methods adopted often such as installing blinds, wing wall and films. There are two suggestions of this paper. 1) WWR (Window-to-Wall Ratio) makes a impaction of energy demands in buildings. 2) Another one is an efficiency of blind systems which are installed in buildings in order to reduce cooling demands. It is also critical to make fundamental model for low-energy building construction by processing a lot of simulation As a result by this study, 1) an external blind system is more useful for reducing cooling energy demands rather than an internal blind system. 2) Buildings which have a large window require more amount of cooling demands. In case of WWR 45%, it needs more cooling energy rather than WWR 15% model's 3) Adopting blind system would reduce energy demands. WWR 45% model with external blind systems reduces about 4% of cooling energy demands compared to same model without any blind systems.4) it is necessary to study an efficiency of blind systems combined with renewable energy and it will be possible to reduce more energy demand in building significantly.

A Study on directions of Developing a Transportation and Procurement System for JIT Management of Curtain Walls in High-Rise Building Construction (커튼월 공사의 적시생산(JIT)관리를 위한 양중 조달 시스템 개발방향에 관한 연구)

  • Yang Jong-Youb;Ahn Byung-Ju;Baek Jong-kun;Kim Jae-Jun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.371-374
    • /
    • 2002
  • Purpose of this study is to suggest the directions for development of a transportation and procurement system for JIT management of curtain walls. First, this study looks over the concept of JIT, and grasps the characteristics of the material and the problems of logistics in the construction field through the field and literature survey. And then, it develops countermeasures for the problems and with this, it suggests the directions for development of a transportation and procurement system for JIT management.

  • PDF

On the Hydraulic Characteristics of Efficient Long Wave Energy Absorber-Eco-breaker 2 (장파 제어체 Eco-breaker 2의 수리특성)

  • Cho, Yong Jun;Kim, Ho Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.547-558
    • /
    • 2008
  • With the advent of super cargo ship due to the explosive increase in the amount of cargo shipped via seas, some mega ports are under construction in South Korea, to accommodate the super cargo ship, and some of them already enter their final phase. To sustain the harbor tranquility, mega ports usually comprise huge vertical type breakwaters which are intrinsically vulnerable to the attack of long waves. In this rationale, we present the chamber type breakwater with a circular curtain wall - Eco-breaker 2, to alleviate the reflection of long waves and numerically investigate the hydraulic characteristics of Eco-breaker 2. As a wave driver, we use the Navier-Stokes eq., the most robust wave driver, using SPH (Smoothed Particle Hydrodynamics) and LES (Large Eddy Simulation). For the verification of numerical results, we also carried out hydraulic model test. It is shown that Eco-breaker 2 can effectively alleviate the reflection of long waves with its inherited large organized eddies encompassing the water chamber and some region off the curtain wall of varying size. It is also shown that the scope and strength of large organized eddies strongly depends on the incident wave period, and the reflection coefficient can be lowered to 0.18 by tuning the size of water chamber such that resident time at the chamber is just short of the half period of incident waves. Based on these results, we present the specification of Eco-breaker 2 to boost its use on the development of water environment friendly harbor worldwide.

Automated Life-Cycle Management System Based on SCM for Super High-rise Buildings Construction (SCM기반 Automated Life-Cycle Management System 구축방안 - 초고층 빌딩 커튼월을 중심으로 -)

  • Yoon Jeong-Hwan;Kim Yea-Sang;Chin Sang-Yoon;Kim Chang-Duk;Choi Yoon-Ki;Chun Jae-Youl;Lim Hyung-Chul
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.430-433
    • /
    • 2003
  • Cost, schedule, quality are the essential parts of success of every construction project. It is especially true in high-rise building construction. Among the construction components in high-rise building construction, curtain walls are very important elements for the project success because they take large portion of cost and schedule. However, curtain wall construction process are very complicated, where many entities including designers, suppliers, contractors and even maintenance contractors are involved. Therefore, control and management of their relationships and production process are critical. It is suggested that this can be solved by the concept of Supply Chain Management which is supported by the automated information technology with Radio Frequency Identification. Such concept is defined as 'Automated Life-Cycle Management System Based On SCM' and this study suggests rode map to establish the system.

  • PDF

Estimation of Friction Coefficient in Permeability Parameter of Perforated Wall with Vertical Slits (연직 슬릿 유공벽의 투수 매개변수의 마찰계수 산정)

  • Kim, Yeul-Woo;Suh, Kyung-Duck;Ji, Chang-Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 2010
  • The matching condition at a perforated wall with vertical slits involves the permeability parameter, which can be calculated by two different methods. One expresses the permeability parameter in terms of energy dissipation coefficient and jet length at the perforated wall, being advantageous in that all the related variables are known, but it gives wrong result in the limit of long waves. The other expresses the permeability parameter in terms of friction coefficient and inertia coefficient, giving correct result from short to long waves, but the friction coefficient should be determined on the basis of a best fit between measured and predicted values of such hydrodynamic coefficients as reflection and transmission coefficients. In the present study, an empirical formula for the friction coefficient is proposed in terms of known variables, i.e., the porosity and thickness of the perforated wall and the water depth. This enables direct estimation of the friction coefficient without invoking a best fit procedure. To obtain the empirical formula, hydraulic experiments are carried out, the results of which are used along with other researchers' results. The proposed formula is used to predict the reflection and transmission coefficients of a curtain-wall-pile breakwater, the upper part of which is a curtain wall and the lower part consisting of a perforated wall with vertical slits. The concurrence between the experimental data and calculated results is good, verifying the appropriateness of the proposed formula.

The Evaluation of Fire-Resistant Performance of the Non-bearing Steel Wall Using Fire Resistant Glass (내화유리를 적용한 강재 유리벽의 내화성능 평가)

  • Lee, Jae-Sung;Yim, Hyun-Chang;Yang, Seung-Cho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.72-81
    • /
    • 2018
  • Fireproof structures using concrete, built-up panels and dry walls are usually used in walls inside fire compartments. However, demand for glass walls is emerging due to increase in interest in visibility and external appearance. In this study on steel fire resistance walls using insulation glass, fire resistance tests and performance evaluations were conducted on 60 minute fire resistance walls and exterior walls which could be applied to interior fire compartments and 90 minute fire resistance walls which could be applied to curtain walls. According to the tests, the specimens satisfied the required fire resistance performance. The finite element analysis was conducted after the tests to evaluate the fire resistance performance of the glass walls. The analysis results showed that the preliminary evaluation of fire resistance performance would be feasible.

An Experimental Study on Insulation and Preventing Condensation Performance of Ventilated Curtain Wall (Mock-up 실험을 통한 통기성 커튼월의 단열 및 결로방지 성능평가)

  • Lee, Mi-Jin;Lee, Sun-Woo;Yeo, Myoung-Souk;Kim, Kwang-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1081-1086
    • /
    • 2006
  • Curtainwall systems has been applied to buildings widely for constructability. However, as cutainwall system include many building materials, they become to damaged vapor barrier and incur condensation. Natural ventilation of an air cavity in a curtainwall is expected to be an prevention of condensation in inner wall and reduce cooling energy in summer. The objective of this experimental study is to evaluating the insulation and condensation Performance of ventilated curtainwall with ventilated cavity depth and ratio of opening area.

  • PDF

A Study on Change in Window Transmitted Solar and the Resultant Wall Surface Convective Heat Gain with Regard to Slat Reflectance of External and Internal Blinds (실내·외 블라인드의 Slat 반사율에 따라 창호 일사투과량 및 그에 따른 벽체 대류열획득량 분석)

  • Hyun, In-Tak;Lee, Jae-Ho;Yoon, Yeo-Beom;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.565-571
    • /
    • 2014
  • Nowadays, to make buildings light weight and aesthetically pleasing, curtain wall structure are commonly used. Therefore, window to wall ratio is increasing, which has caused cooling and heating load in crease in buildings as well. This phenomenon has negative impact from energy point of view. This paper analyzes window and wall convective heat gain when the slat reflectance of external and internal blinds are changed for the better understanding of the fundamentals behind the phenomena. It was observed that, if slat reflectance is increased, window transmitted solar increases and convection heat rate is clearly affected. Among six surfaces including four walls, ceiling and floor, maximum convection heat rate occurs on the south wall in summer. On the other hand, ceiling and floor showed the lowest convection heat gain, since they are shared by adjacent floors.