Estimation of Friction Coefficient in Permeability Parameter of Perforated Wall with Vertical Slits

연직 슬릿 유공벽의 투수 매개변수의 마찰계수 산정

  • Kim, Yeul-Woo (R&D Center, Kunil Engineering Co., Ltd.) ;
  • Suh, Kyung-Duck (Department of Civil & Environmental Engineering, Seoul National University) ;
  • Ji, Chang-Hwan (Department of Civil & Environmental Engineering, Seoul National University)
  • 김열우 (건일엔지니어링 기술연구소) ;
  • 서경덕 (서울대학교 건설환경공학부) ;
  • 지창환 (서울대학교 건설환경공학부)
  • Published : 2010.02.28

Abstract

The matching condition at a perforated wall with vertical slits involves the permeability parameter, which can be calculated by two different methods. One expresses the permeability parameter in terms of energy dissipation coefficient and jet length at the perforated wall, being advantageous in that all the related variables are known, but it gives wrong result in the limit of long waves. The other expresses the permeability parameter in terms of friction coefficient and inertia coefficient, giving correct result from short to long waves, but the friction coefficient should be determined on the basis of a best fit between measured and predicted values of such hydrodynamic coefficients as reflection and transmission coefficients. In the present study, an empirical formula for the friction coefficient is proposed in terms of known variables, i.e., the porosity and thickness of the perforated wall and the water depth. This enables direct estimation of the friction coefficient without invoking a best fit procedure. To obtain the empirical formula, hydraulic experiments are carried out, the results of which are used along with other researchers' results. The proposed formula is used to predict the reflection and transmission coefficients of a curtain-wall-pile breakwater, the upper part of which is a curtain wall and the lower part consisting of a perforated wall with vertical slits. The concurrence between the experimental data and calculated results is good, verifying the appropriateness of the proposed formula.

연직 슬릿 유공벽에서의 정합조건에는 투수 매개변수가 포함되는데, 보통 투수 매개변수는 두 가지 방법으로 계산이 가능하다. 하나는 투수 매개변수를 유공벽에서의 에너지 소산 계수와 제트의 길이로 나타내는 방법으로서, 관련된 모든 변수를 알고 있다는 점에서 장점을 가지고 있으나, 장파의 영역에서 옳지 않은 결과를 초래하는 단점이 있다. 다른 하나는 투수 매개변수를 마찰계수와 관성계수로 나타내는 방법으로서, 단파부터 장파까지 모든 영역에서 올바른 결과를 나타내지만, 반사계수, 투과계수 등에 대한 관측치와 계산치 사이의 최적적합에 기초하여 마찰계수를 결정해야 한다는 단점이 있다. 본 논문에서는 유공벽의 유공율 및 두께, 수심 등 기지의 변수로 마찰계수에 대한 경험식을 제시하였다. 이렇게 함으로써 최적적합 과정을 거치지 않고 마찰계수를 직접 산정할 수 있도록 한다. 경험식을 구하기 위하여 수리실험을 실시하였으며, 다른 연구자들의 결과를 함께 사용하여 경험식을 제시하였다. 제시된 공식을 이용하여 상부는 커튼월이고 하부는 연직 슬릿 유공벽으로 되어 있는 커튼월-파일 방파제의 반사계수 및 투과계수를 계산하였다. 실험치와 계산치가 잘 일치함을 보임으로써 제시한 경험식의 적합성을 검증하였다.

Keywords

References

  1. 서경덕, 지창환, 김열우 (2008). 연직 슬릿 유공벽의 투수계수 계산방법의 비교. 제 5회 한국유체공학학술대회 논문집, 제주, 506-509.
  2. 조일형, 김남형 (2002). 직접 슬릿판에 의한 반사율과 투과율 해석. 한국해안해양공학회지, 16(3), 1-7.
  3. Bennett, G.S., McIver, P. and Smallman, J.V. (1992). A mathematical model of a slotted wavescreen breakwater. Coastal Eng., 18,231-249. https://doi.org/10.1016/0378-3839(92)90021-L
  4. Hagiwara, K. (1985). Analysis of upright structure for wave dissipation using integral equation. Proc., 19th Int. Conf. on Coastal Eng., ASCE, 3, 2810-2826.
  5. Hossain, A., Kioka, W. and Kitano, T. (2001). Transmission of long waves induced by short-wave groups through a composite breakwater. Coastal Eng. J., 43, 83-97. https://doi.org/10.1142/S0578563401000281
  6. Isaacson, M., Premasiri, S. and Yang, G. (1998). Wave interactions with vertical slotted barrier. J. Waterw., Port, Coastal, and Ocean Eng., 124, 118-126. https://doi.org/10.1061/(ASCE)0733-950X(1998)124:3(118)
  7. Kakuno, S. and Liu, P.L.-F. (1993). Scattering of water waves by vertical cylinders. J. Waterw., Port, Coastal, and Ocean Eng., 119(3), 302-322. https://doi.org/10.1061/(ASCE)0733-950X(1993)119:3(302)
  8. Kim, B.H. (1998). Interaction of waves, seabed and structures. PhD dissertation, Seoul National Univ., Seoul. Korea., 5, 142-146.
  9. Li, Y., Liu, Y. and Teng, B. (2006). Porous effect parameter of thin permeable plates. Coastal Eng. J., 48, 309-336. https://doi.org/10.1142/S0578563406001441
  10. Losada, I.J., Losada, M.A. and Baquerize, A. (1993). An analytical method to evaluate the efficiency of porous screens as wave dampers. Applied Ocean Research, 15, 207-215. https://doi.org/10.1016/0141-1187(93)90009-M
  11. Mei, C.C., Liu, P.L.-F. and Ippen, A.T. (1974). Quadratic loss and scattering of long waves. J. Waterw., Harbors Coastal Eng. Div., Am. Soc. Civ. Eng., 100, 217-239.
  12. Mei, C.C. (1983). The applied dynamics of ocean surface waves, Wiley, Newyork.
  13. Park, W.S., Kim, B.H., Suh, K.D. and Lee, K.S. (2000). Scattering of irregular waves by vertical cylinders. Coastal Eng. J., 42, 253-271.
  14. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992). Numerical recipes in FORTRAN: The art of scientific computing, Cambridge University Press, Cambridge, U.K.
  15. Sollitt, C.K. and Cross, R.H. (1972). Wave transmission through permeable breakwaters. Proc., 13th Int. Conf. on Coastal Eng., ASCE, 3, 1827-1846.
  16. Suh, K.D., Park, W.S. and Park, B.S. (2001). Separation of incident and reflected waves in wave-current flumes. Coastal Eng., 43,149-159. https://doi.org/10.1016/S0378-3839(01)00011-4
  17. Suh, K.D., Son, S.Y., Lee, J.I. and Lee, T.H. (2002). Calculation of irregular wave reflection from perforated-wall caisson breakwaters using a regular wave model. Proc. 28th Conf. on Coastal Eng., 3, 1709-1721.
  18. Suh, K.D., Shin, S. and Cox, D.T. (2006). Hydrodynamic characteristics of pile-supported vertical wall breakwaters. J. Waterw.,Port, Coastal, and Ocean Eng., 123(3), 118-126.
  19. Willmott, C.J. (1981). On the validation of models. Physical Geography, 2, 184-194.
  20. Yu, X. (1995). Diffraction of water waves by porous breakwaters. J. Waterw., Port, Coastal, and Ocean Eng., 121, 275-282. https://doi.org/10.1061/(ASCE)0733-950X(1995)121:6(275)
  21. Zhu, S. and Chwang, A.T. (2001). Analytical study of porous wave absorber. J. Eng. Mech., 127, 326-332. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:4(326)