• Title/Summary/Keyword: Current variation

Search Result 2,709, Processing Time 0.028 seconds

Characteristics for Current and Power of Induction Motor by Load Variation (부하변동에 따른 유도전동기 전류와 전력 특성)

  • Kim, Jong-Gyeum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.8
    • /
    • pp.82-87
    • /
    • 2011
  • Induction motor is most widely used as the driving power in the industrial site. Induction motor current is composed of two parts, magnetizing current and load current. Load current uses energy what is doing the work. Load current varies with load variance but magnetizing current is constant, regardless of load variation. Magnetizing current needs for establishing the rotating magnetic field of induction motor and lags behind the voltage. Generally capacitor is used for power-factor compensation of inductive load. Self-excitation occurs when the capacitive reactive current from the capacitor is greater than the magnetizing current of the induction motor. When this occurs, excessive voltages can result on the terminals of the motor. This excessive voltage can cause insulation degradation and ultimately result in motor insulation failure. In this paper, we analyzed that how the magnetizing current and condenser current is operating at the allowable limit by the load variation. Condenser current is below allowable limit of magnetizing current but magnetizing current is above allowable limit at the lower load operation condition.

Accuracy of Current Delivery System in Current Source Data-Driver IC for AM-OLED

  • Hattori, Reiji
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.4
    • /
    • pp.269-274
    • /
    • 2004
  • Current delivery system, in which the analog current produced by a unique DAC circuit is stored into a current-memory circuit and delivered in a time-divided sequence, shows variation of output current as low as 4% in a current source data-driver IC for AM-OLED driven by a current-programmed method without any fuse repairing after fabrication. This driver IC has 54 outputs and can sink constant current as low as 3 ${\mu}A$ with 6-bit analog levels. Such a low current level without variation can hardly be obtained by an ordinary MOS transistor because the current level is in the sub-threshold region and changes exponentially with threshold voltage variation. Thus we adopted a current mirror circuit composed of bipolar transistors to supply well-controlled current within a nano-ampere range.

Subthreshold Current Model of FinFET Using Three Dimensional Poisson's Equation

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.1
    • /
    • pp.57-61
    • /
    • 2009
  • This paper has presented the subthreshold current model of FinFET using the potential variation in the doped channel based on the analytical solution of three dimensional Poisson's equation. The model has been verified by the comparison with the data from 3D numerical device simulator. The variation of subthreshold current with front and back gate bias has been studied. The variation of subthreshold swing and threshold voltage with front and back gate bias has been investigated.

Spatial Variation of the Polar Front in relation to the Tsushima Warm Current in the East Sea (동해에서 쓰시마난류의 변동과 관련한 극전선의 공간적 변화)

  • 이충일;조규대;최용규
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.943-948
    • /
    • 2003
  • Variation of the polar front in the East Sea is studied using temperature and dissolved oxygen data obtained from Japan Meteorological Agency from 1972 to 1999. Variation of the polar front in the East Sea has a close relation to the variation of the Tsushima Warm Current (TWC). When the TWC spreads widely in the East Sea, polar front moves northward. The spatial variation of the polar front is greater in the southwestern area of the East Sea and the northern area of Tsugaru Strait where the variation of the TWC's distribution area is greater than those in others of the East Sea. Hence, in the southeastern area of the East Sea, that is, between near Noto peninsula and Tsugaru Strait, the spatial variation of the polar front is not so wide as in the southwestern area because the flow of TWC is stable.

Analysis of Series Arc-Fault Signals Using Wavelet Transform From Non-linear Loads (웨이블렛 변환을 이용한 비선형 부하 전원선에서의 직렬 아크고장 신호 분석)

  • Bang, Sun-Bae;Park, Chong-Yeun;Jang, Mog-Soon;Choi, Won-HO
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1470-1477
    • /
    • 2008
  • In this paper, a new detection method of series arc-fault signals occurring at the wiring of home appliances is proposed. The discrete wavelet transform was used for the numerical analysis of the variation rate in peak, RMS, noise energy, shoulder of the arc-fault current wave. As a results, the arc distinction threshold value of these variation rates was about 0.1 in most cases. The arc-fault current of the loads with the active PFC circuit showed a high rate of variation in noise energy and shoulder, but arc-fault current of the loads without the active PFC circuit showed a high rate of variation in peak and RMS. The arc fault current in resistive loads showed a high rate of variation in shoulder.

A Low Voltage Bandgap Current Reference with Low Dependence on Process, Power Supply, and Temperature

  • Cheon, Jimin
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.59-67
    • /
    • 2018
  • The minimum power supply voltage of a typical bandgap current reference (BGCR) is limited by operating temperature and input common mode range (ICMR) of a feedback amplifier. A new BGCR using a bandgap voltage generator (BGVG) is proposed to minimize the effect of temperature, supply voltage, and process variation. The BGVG is designed with proportional to absolute temperature (PTAT) characteristic, and a feedback amplifier is designed with weak-inversion transistors for low voltage operation. It is verified with a $0.18-{\mu}m$ CMOS process with five corners for MOS transistors and three corners for BJTs. The proposed circuit is superior to other reported current references under temperature variation from $-40^{\circ}C$ to $120^{\circ}C$ and power supply variation from 1.2 V to 1.8 V. The total power consumption is $126{\mu}W$ under the conditions that the power supply voltage is 1.2 V, the output current is $10{\mu}A$, and the operating temperature is $20^{\circ}C$.

An Accurate Current Reference using Temperature and Process Compensation Current Mirror (온도 및 공정 보상 전류 미러를 이용한 정밀한 전류 레퍼런스)

  • Yang, Byung-Do
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.8
    • /
    • pp.79-85
    • /
    • 2009
  • In this paper, an accurate current reference using temperature and process compensation current mirror (TPC-CM) is proposed. The temperature independent reference current is generated by summing a proportional to absolute temperature (PTAT) current and a complementary to absolute temperature (CTAT) current. However, the temperature coefficient and magnitude of the reference current are influenced by the process variation. To calibrate the process variation, the proposed TPC-CM uses two binary weighted current mirrors which control the temperature coefficient and magnitude of the reference current. After the PTAT and CTAT current is measured, the switch codes of the TPC-CM is fixed in order that the magnitude of reference current is independent to temperature. And, the codes are stored in the non-volatile memory. In the simulation, the effect of the process variation is reduced to 0.52% from 19.7% after the calibration using a TPC-CM in chip-by-chip. A current reference chip is fabricated with a 3.3V 0.35um CMOS process. The measured calibrated reference current has 0.42% variation for $20^{\circ}$C${\sim}$100$^{\circ}$C.

Cost-Efficient and Automatic Large Volume Data Acquisition Method for On-Chip Random Process Variation Measurement

  • Lee, Sooeun;Han, Seungho;Lee, Ikho;Sim, Jae-Yoon;Park, Hong-June;Kim, Byungsub
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.184-193
    • /
    • 2015
  • This paper proposes a cost-efficient and automatic method for large data acquisition from a test chip without expensive equipment to characterize random process variation in an integrated circuit. Our method requires only a test chip, a personal computer, a cheap digital-to-analog converter, a controller and multimeters, and thus large volume measurement can be performed on an office desk at low cost. To demonstrate the proposed method, we designed a test chip with a current model logic driver and an array of 128 current mirrors that mimic the random process variation of the driver's tail current mirror. Using our method, we characterized the random process variation of the driver's voltage due to the random process variation on the driver's tail current mirror from large volume measurement data. The statistical characteristics of the driver's output voltage calculated from the measured data are compared with Monte Carlo simulation. The difference between the measured and the simulated averages and standard deviations are less than 20% showing that we can easily characterize the random process variation at low cost by using our cost-efficient automatic large data acquisition method.

Development of Eddy Current Sensor Considering Frequency and Velocity (주파수 및 속도 변화에 따른 와전류 센서의 개발)

  • Choi, Duck-Su;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.770-772
    • /
    • 2002
  • In this paper, the eddy current sensor is develped for observing the ability of detecting defect with variation of frequency and velocity. The circuit designed for processing detected voltage and changing frequency is used for eddy current sensor to detect defect with variation of frequency. The ability of eddy current sensor to detect defects is studied with variation of velocity adjusted by rotating the circular plate. This study shows that the ability of eddy current sensor for detecting defect is increased and decreased by frequency. This fact means that the sensor has its best ability at a certain frequency. And the ability of eddy current sensor by velocity is decreased by increased velocity. Therefore, the eddy current sensor has to be developed with consideration of its operation velocity and frequency.

  • PDF

A study on electric current variation characteristics during Electrokinetic remediation of kaolinite contaminated by Pb (납으로 오염된 카올린의 Electrokinetic 정화기법 적용시 전류변화 특성에 관한 연구)

  • 김정환;한상재;김수삼
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.302-306
    • /
    • 2000
  • In case of applying electrokinetic remediation, magnitude of electric current is one of major factors for estimation of contaminant transport. In practice, electric current provide determination of electric conductivity based on specimen resistance. Electric current variation is produced during Electrokinetic remediation test. Electric current is decreased by expotential function according to time in condition of constant voltage. This can be interpreted as precipitation effect by OH$^{-10}$ generation in a cathode.

  • PDF