• Title/Summary/Keyword: Current power generation

Search Result 1,270, Processing Time 0.029 seconds

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Power Generation Using CFD

  • Prasad, Deepak;Zullah, Mohammed Asid;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.630-631
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for two different models. Observation of flow characteristics, pressure and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code.

  • PDF

A Study on the Storage Stability and Malodor of Bio-Fuel oil (바이오중유의 저장안정성 및 악취특성 연구)

  • JANG, EUN-JUNG;PARK, CHEON-KYU;LEE, BONG-HEE
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.6
    • /
    • pp.712-720
    • /
    • 2017
  • As Korean government has activated the renewable portfolio standard (RPS) since 2012, producers have been seeking and using the various renewable resources to meet the RPS quota. One of these efforts, Power Bio-Fuel oil demonstration project is being conducted to check the operability and compatibility with fossil fuel, Fuel oil (B-C) from 2014. The oil is a mixture of vegetable oil and animal fat or fatty acid ester of them and should satisfy some specification to use the power generation. The oil's quality and combustion characteristics are different from conventional oil, Fuel oil (B-C) in current power plant facility. In this study, it was investigated the storage stability and malodor intensity of Bio-Fuel oil.

Electrical Characteristics of Enhancement-Mode n-Channel Vertical GaN MOSFETs and the Effects of Sidewall Slope

  • Kim, Sung Yoon;Seo, Jae Hwa;Yoon, Young Jun;Kim, Jin Su;Cho, Seongjae;Lee, Jung-Hee;Kang, In Man
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1131-1137
    • /
    • 2015
  • Gallium nitride (GaN) is a promising material for next-generation high-power applications due to its wide bandgap, high breakdown field, high electron mobility, and good thermal conductivity. From a structure point of view, the vertical device is more suitable to high-power applications than planar devices because of its area effectiveness. However, it is challenging to obtain a completely upright vertical structure due to inevitable sidewall slope in anisotropic etching of GaN. In this letter, we design and analyze the enhancement-mode n-channel vertical GaN MOSFET with variation of sidewall gate angle by two-dimensional (2D) technology computer-aided design (TCAD) simulations. As the sidewall slope gets closer to right angle, the device performances are improved since a gradual slope provides a leakage current path through the bulk region.

Formation of Ohmic Contact to AlGaN/GaN Heterostructure on Sapphire

  • Kim, Zin-Sig;Ahn, Hokyun;Lim, Jong-Won;Nam, Eunsoo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.292-292
    • /
    • 2014
  • Wide band gap semiconductors, such as III-nitrides (GaN, AlN, InN, and their alloys), SiC, and diamond are expected to play an important role in the next-generation electronic devices. Specifically, GaN-based high electron mobility transistors (HEMTs) have been targeted for high power, high frequency, and high temperature operation electronic devices for mobile communication systems, radars, and power electronics because of their high critical breakdown fields, high saturation velocities, and high thermal conductivities. For the stable operation, high power, high frequency and high breakdown voltage and high current density, the fabrication methods have to be optimized with considerable attention. In this study, low ohmic contact resistance and smooth surface morphology to AlGaN/GaN on 2 inch c-plane sapphire substrate has been obtained with stepwise annealing at three different temperatures. The metallization was performed under deposition of a composite metal layer of Ti/Al/Ni/Au with thickness. After multi-layer metal stacking, rapid thermal annealing (RTA) process was applied with stepwise annealing temperature program profile. As results, we obtained a minimum specific contact resistance of $1.6{\times}10^{-7}{\Omega}cm2$.

  • PDF

A New Islanding Detection Method Based on Feature Recognition Technology

  • Zheng, Xinxin;Xiao, Lan;Qin, Wenwen;Zhang, Qing
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.760-768
    • /
    • 2016
  • Three-phase grid-connected inverters are widely applied in the fields of new energy power generation, electric vehicles and so on. Islanding detection is necessary to ensure the stability and safety of such systems. In this paper, feature recognition technology is applied and a novel islanding detection method is proposed. It can identify the features of inverter systems. The theoretical values of these features are defined as codebooks. The difference between the actual value of a feature and the codebook is defined as the quantizing distortion. When islanding happens, the sum of the quantizing distortions exceeds the threshold value. Thus, islanding can be detected. The non-detection zone can be avoided by choosing reasonable features. To accelerate the speed of detection and to avoid miscalculation, an active islanding detection method based on feature recognition technology is given. Compared to the active frequency or phase drift methods, the proposed active method can reduce the distortion of grid-current when the inverter works normally. The principles of the islanding detection method based on the feature recognition technology and the improved active method are both analyzed in detail. An 18 kVA DSP-based three-phase inverter with the SVPWM control strategy has been established and tested. Simulation and experimental results verify the theoretical analysis.

Design of a High-performance High-pass Generalized Integrator Based Single-phase PLL

  • Kulkarni, Abhijit;John, Vinod
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1231-1243
    • /
    • 2017
  • Grid-interactive power converters are normally synchronized with the grid using phase-locked loops (PLLs). The performance of the PLLs is affected by the non-ideal conditions in the sensed grid voltage such as harmonics, frequency deviations and the dc offsets in single-phase systems. In this paper, a single-phase PLL is presented to mitigate the effects of these non-idealities. This PLL is based on the popular second order generalized integrator (SOGI) structure. The SOGI structure is modified to eliminate the effects of input dc offsets. The resulting SOGI structure has a high-pass filtering property. Hence, this PLL is termed as a high-pass generalized integrator based PLL (HGI-PLL). It has fixed parameters which reduces the implementation complexity and aids in the implementation in low-end digital controllers. The HGI-PLL is shown to have the lowest resource utilization among the SOGI based PLLs with dc cancelling capability. Systematic design methods are evolved leading to a design that limits the unit vector THD to within 1% for given non-ideal input conditions in terms of frequency deviation and harmonic distortion. The proposed designs achieve the fastest transient response. The performance of this PLL has been verified experimentally. The results agree with the theoretical prediction.

Thermal Management for Multi-core Processor and Prototyping Thermal-aware Task Scheduler (멀티 코어 프로세서의 온도관리를 위한 방안 연구 및 열-인식 태스크 스케줄링)

  • Choi, Jeong-Hwan
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.7
    • /
    • pp.354-360
    • /
    • 2008
  • Power-related issues have become important considerations in current generation microprocessor design. One of these issues is that of elevated on-chip temperatures. This has an adverse effect on cooling cost and, if not addressed suitably, on chip reliability. In this paper we investigate the general trade-offs between temporal and spatial hot spot mitigation schemes and thermal time constants, workload variations and microprocessor power distributions. By leveraging spatial and temporal heat slacks, our schemes enable lowering of on-chip unit temperatures by changing the workload in a timely manner with Operating System (OS) and existing hardware support.

Control of Linear Generator Using Hydrogen as a Fuel (수소연소를 이용한 선형발전기 제어)

  • Lee, Seung-Hee;Jeong, Seong-Gi;Choi, Ju-Yeop;Choi, Jun-Young;Oh, Si-Doek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.391-394
    • /
    • 2008
  • Global warming and air pollution have increased the amount $CO_2$ in the atmosphere. In order to decrease the amount of $CO_2$, lots of researches are conducted toward using Hydrogen energy. Because of its high efficiency energy level and environmental friendly features, many companies have researched on developing hydrogen engine system and distributed generation system. Especially, the focus of this research provides the operation method of linear generator for hydrogen fuel combustion linear engine. During an ignition, linear generator is operated by motor to create the initial condition of engine combustion. Once the engine combustion is stabilized, the generator supplies electric power to grid. In order to stabilize the engine, linear generator is required to control mover frequency, direction, and force; Hence the PCS(Power Conversion System) place three H-bridge type inverter stacks in parallel to control phase current independently. As well, by using Back-to-Back method, it can receive electric power from both end.

  • PDF

Research Trends and Prospects of Reverse Electrodialysis Membranes (역전기투석용 이온교환막의 연구동향 및 전망)

  • Hwang, Jin Pyo;Lee, Chang Hyun;Jeong, Yeon Tae
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.109-120
    • /
    • 2017
  • The reverse electrodialysis (RED) is an energy generation system to convert chemical potential of saline water directly into electric energy via the combination of current derived from a redox couple electrolyte and ionic potential obtained when cation ($Na^+$) and anion ($Cl^-$) pass through cation exchange membrane (CEM) and anion exchange membrane (AEM) into fresh water, respectively. Ion exchange membrane, a key element of RED system, should satisfy requirements such as 1) low swelling behavior, 2) a certain level of ion exchange capacity, 3) high ion conductivity, and 4) high perm-selectivity to achieve high power density. In this paper, research trends and prospects of ionomer materials and ion exchange membranes are dealt with.

CURRENT RESEARCH AND DEVELOPMENT ACTIVITIES ON FISSION PRODUCTS AND HYDROGEN RISK AFTER THE ACCIDENT AT FUKUSHIMA DAIICHI NUCLEAR POWER STATION

  • NISHIMURA, TAKESHI;HOSHI, HARUTAKA;HOTTA, AKITOSHI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • After the Fukushima Daiichi nuclear power plant (NPP) accident, new regulatory requirements were enforced in July 2013 and a backfit was required for all existing nuclear power plants. It is required to take measures to prevent severe accidents and mitigate their radiological consequences. The Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R) has been conducting numerical studies and experimental studies on relevant severe accident phenomena and countermeasures. This article highlights fission product (FP) release and hydrogen risk as two major areas. Relevant activities in the S/NRA/R are briefly introduced, as follows: 1. For FP release: Identifying the source terms and leak mechanisms is a key issue from the viewpoint of understanding the progression of accident phenomena and planning effective countermeasures that take into account vulnerabilities of containment under severe accident conditions. To resolve these issues, the activities focus on wet well venting, pool scrubbing, iodine chemistry (in-vessel and ex-vessel), containment failure mode, and treatment of radioactive liquid effluent. 2. For hydrogen risk: because of three incidents of hydrogen explosion in reactor buildings, a comprehensive reinforcement of the hydrogen risk management has been a high priority topic. Therefore, the activities in evaluation methods focus on hydrogen generation, hydrogen distribution, and hydrogen combustion.