Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.109

Research Trends and Prospects of Reverse Electrodialysis Membranes  

Hwang, Jin Pyo (Energy Engineering Department, Dankook University)
Lee, Chang Hyun (Energy Engineering Department, Dankook University)
Jeong, Yeon Tae (Future Technology Research Laboratory, Korea Electric Power Research Institute)
Publication Information
Membrane Journal / v.27, no.2, 2017 , pp. 109-120 More about this Journal
Abstract
The reverse electrodialysis (RED) is an energy generation system to convert chemical potential of saline water directly into electric energy via the combination of current derived from a redox couple electrolyte and ionic potential obtained when cation ($Na^+$) and anion ($Cl^-$) pass through cation exchange membrane (CEM) and anion exchange membrane (AEM) into fresh water, respectively. Ion exchange membrane, a key element of RED system, should satisfy requirements such as 1) low swelling behavior, 2) a certain level of ion exchange capacity, 3) high ion conductivity, and 4) high perm-selectivity to achieve high power density. In this paper, research trends and prospects of ionomer materials and ion exchange membranes are dealt with.
Keywords
Reverse electrodialysis; Ion exchange membrane; Ion conductive materials; Electrochemical properties; Salinity gradient power;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 G. Lagger, H. Jensen, J. Josserand, and H. H. Girault, "Hydro-voltaic cells: Part 1. concentration cells", J. Electroanal. Chem., 545, 1 (2003).   DOI
2 J. W. Post, J. Veerman, H. V. M. Hamelers, G. J. W Euverink, S. J. Metz, K. Nymeijer, and C. J. N. Buisman, "Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis", J. Membr. Sci., 288, 218 (2007).   DOI
3 M. Turek and B. Bandura, "Renewable energy by reverse electrodialysis", Desalination, 205, 67 (2007).   DOI
4 X. Tongwen and Y. Weihua, "Fundamental studies of a new series of anion exchange membranes: membrane preparation and characterization", J. Membr. Sci., 190, 159 (2001).   DOI
5 R. Audinos, "Inverse electrodialysis. Study of electric energy obtained starting with two solutions of different salinity", J. Power Sources, 10, 203 (1983).   DOI
6 J. Veerman, J. W. Post, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reducing power losses caused by ionic shortcut currents in reverse electrodialysis stacks by a validated model", J. Membr. Sci., 310, 418 (2008).   DOI
7 D. A. Vermaas, M. Saakes, and K. Nijmeijer, "Enhanced mixing in the diffusive boundary layer for energy generation in reverse electrodialysis", J. Membr. Sci., 453, 312 (2014).   DOI
8 P. Dlugolecki, J. Dabrowska, K. Nijmeijer, and M. Wessling, "Ion conductive spacers for increased power generation in reverse electrodialysis", J. Membr. Sci., 347, 101 (2010).   DOI
9 D, H, Kim and M, S, Kang, "Preparation and characterizations of ionomer-coated pore-filled ionexchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2010).
10 S. M. Hosseini, A. Gholami, S. S. Madaeni, A. R. Moghadassi, and A. R. Hamidi, "Fabrication of (polyvinylchloride/celluloseacetate) electrodialysis heterogeneous cation exchange membrane: characterization and performance in desalination process", Desalination, 306, 51 (2012).   DOI
11 R. E. Lacey, "Energy by reverse electrodialysis", Ocean Eng., 7, 1 (1980).   DOI
12 P. Dlugolecki, P. Ogonowski, S. J. Metz, M. Saakes, K. Nijmeijer, and M. Wessling, "On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport", J. Membr. Sci., 349, 369 (2010).   DOI
13 P. Xing, G. P. Robertson, M. D. Guiver, S. D Mikhailenko, K. Wang, and S. Kaliaguine, "Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes", J. Membr. Sci., 229, 95 (2004).   DOI
14 D. W. Shin, H. K. Kim, T. H. Kim, J. S. Park, and D. H. Jeon, "Numerical analysis for the effect of spacer in reverse electrodialysis", Clean Technol., 19, 1 (2013).   DOI
15 B. E. Logan and M. Elimelech, "Membrane-based processes for sustainable power generation using water", Nature, 488, 313 (2012).   DOI
16 M. Elimelech and W. A. Phillip, "The future of sea water desalination: energy, technology, and the environment", Science, 333, 712 (2011).   DOI
17 R. K. Nagarale, G. S. Gohil, and V. K. Shahi, "Recent developments on ion-exchange membranes and electro-membrane processes", Adv. Colloid Interface Sci., 119, 97 (2006).   DOI
18 M. Arsalan, M. M. A. Khan, and Rafiuddin, "A comparative study of theoretical, electrochemical and ionic transport through PVC based $Cu_3(PO_4)_2$ and polystyrene supported $Ni_3(PO_4)_2 $composite ion exchange porous membranes", Desalination, 318, 97 (2013).   DOI
19 S. C. Georgea, M. knörgen, and S. Thomas, "Effect of nature and extent of crosslinking on swelling and mechanical behavior of styrene- butadiene rubber membranes", J. Membr. Sci., 163, 1 (1999).   DOI
20 J. C. Na, H. K. Kim, C. S. Kim, and M. H. Han, "Effect of seawater/Fresh water flow rates on power density of reverse electrodialysis", J. Kor. Soc. Environ. Eng., 36, 624 (2014).   DOI
21 J. G. Hong, B. Zhang, S. Glabman, N. Uzal, X. Dou, H. Zhang, X. Wei, and Y. S. Chen, "Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review", J. Membr. Sci., 486, 71 (2015).   DOI
22 S. P. Kim, B. K. Kim, H. M. Lee, J. W. Rhim, and S. I. Jeong, "Studies on the preparation of anion exchange membrane through blending of the poly(ethylenimine) and the poly(vinyl alcohol)", Membr. J., 20, 335 (2010).
23 J. Hu, C. X. Zhang, J. Cong, H. Toyoda, M. Nagatsu, and Y. D. Meng, "Plasma-grafted alkaline anion-exchange membranes based on polyvinyl chloride for potential application in direct alcohol fuel cell", J. Power Sources, 196, 4483 (2011).   DOI
24 S. E. Kang and C. H. Lee, "Perfluorinated sulfonic acid ionomer-PTFE pore-filling membranes for polymer electrolyte membrane fuel cells.", Membr. J., 25, 171 (2015).   DOI
25 S. Pawlowskia, T. Rijnaartsb, M. Saakes, K. Nijmeijer, J. G. Crespoa, and S. Velizarova, "Improved fluid mixing and power density in reverse electrodialysis stacks with chevron-profiled membranes", J. Membr. Sci., 531, 111 (2017).   DOI
26 H. Strathmann, "Ion exchange membrane separation processes, in: Membrane Science and Technology Series", pp. 348, Science Direct, Amsterdam, Boston (2004).
27 N. P. Brandon, S. Skinner, and B. C. H. Steele, "Recent advances in materials for fuel cells", Annu. Rev. Mater. Res., 33, 183 (2003).   DOI
28 T. Sata, Ion Exchange Membranes: Preparation, Characterization, Modification and Application, The Royal Society of Chemistry, Cambridge, (2004).
29 J. Veerman, R. M. de Jong, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density", J. Membr. Sci., 343, 7 (2009).   DOI
30 E. Guler, Y. L. Zhang, M. Saakes, and K. Nijmeijer, "Tailor-made anion-exchange membranes for salinity gradient power generation using reverse electrodialysis", Chemsuschem, 5, 2262 (2012).   DOI
31 F. Helfer, C. Lemckert, and Y. G. Anissimov, "Osmotic power with pressure retarded osmosis: theory, performance and trends - a review", J. Membr. Sci., 453, 337 (2014).   DOI
32 S. Koter, P. Piotrowski, and J. Kerres, "Comparative investigations of ion-exchange membranes", J. Membr. Sci., 153, 83 (1999).   DOI
33 H. Strathmann, A. Grabowski, and G. Eigenberger, "Ion-exchange membranes in the chemical process industry", Ind. Eng. Chem. Res., 52, 10364 (2013).   DOI
34 T. J. Cho, "Prospect of Water Treatment Technology by Ion Exchange Membrane", KONETIC (2014).
35 H. Strathmann, "Ion-exchange membrane separation processes", Elsevier, Amsterdam (2004).
36 P. Dlugolecki, K. Nymeijer, S. Metz, and M. Wessling, "Current status of ion exchange membranes for power generation from salinity gradients", J. Membr. Sci., 319, 214 (2008).   DOI
37 G. L. Wick, "Power from salinity gradients", Energy, 3, 95 (1978).   DOI
38 J. Veerman, M. Saakes, S. J. Metz, and G. J. Harmsen, "Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water", J. Membr. Sci., 327, 136 (2009).   DOI
39 G. M. Geise, M. A. Hickner, and B. E. Logan, "Ionic resistance and permselectivity tradeoffs in anion exchange membranes", ACS Appl. Mater. Interfaces, 5, 10294 (2013).   DOI
40 S. Nouri, L. Dammak, G. Bulvestre, and B. Auclair, "Comparison of three methods for the determination of the electrical conductivity of ion-exchange polymers", Eur. Polymer. J., 38, 1907 (2002).   DOI
41 D. A. Vermaas, M. Saakes, and K. Nijmeijer, "Doubled power density from salinity gradients at reduced intermembrane distance", Environ. Sci. Technol., 45, 7089 (2011).   DOI
42 F. Suda, T. Matsuo, and D. Ushioda, "Transient changes in the power output from the concentration difference cell (dialytic battery) between sea water and river water", Energy, 32, 165 (2007).   DOI
43 E. Brauns, "Salinity gradient power by reverse electrodialysis: Effect of model parameters on electrical power output", Desalination 237, 378 (2009).   DOI
44 E. Brauns, "Towards a worldwide sustainable and simultaneous large-scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power?", Desalination, 219, 312 (2008).   DOI
45 D. A. Vermaas, J. Veerman, M. Saakes, and K. Nijmeijer, "Influence of multivalent ions on renewable energy generation in reverse electrodialysis", Energy Environ. Sci., 7, 1434 (2014).   DOI
46 M. Zhang, H. K. Kim, E. Chalkova, F. Mark, S. N. Lvov, and T. M. Chung, "New polyethylene based anion exchange membranes (PE-AEMs) with high ionic conductivity", Macromolecules, 44, 5937 (2011).   DOI
47 K. L. Lee, R. W. Baker, and H. K. Lonsdale, "Membranes for power generation by pressure-retarded osmosis," J. Membr. Sci., 8, 141 (1981).   DOI
48 G. L. Wick and W. R. Schmitt, "Prospects for renewable energy from sea," Mar. Technol. Soc. J., 11, 16 (1977).
49 J. W. Post, H. V. Hamelers, and C. J. N. Buisman, "Energy recovery from controlled mixing salt and fresh water with a reverse electro-dialysis system," Environ. Sci. Technol., 42, 5785 (2008).   DOI
50 J. H. Kim, S. H. Kim, and J. H. Kim, "Pressure retarded osmosis process: Current status and future," J. Kor. Soc. Environ. Eng., 36, 791 (2014).   DOI
51 E. Brauns, "Towards a worldwide sustainable and simultaneous large scale production of renewable energy and potable water through salinity gradient power by combining reversed electrodialysis and solar power", Desalination, 219, 312 (2008).   DOI
52 J. Jagur-Grodzinski and R. Kramer, "Novel process for direct conversion of free energy of mixing into electric power", Ind. Eng. Chem. Process Des. Dev., 25, 443 (1986).   DOI
53 T. W. Xu, "Ion exchange membranes: State of their development and perspective", J. Membr. Sci., 263, 1 (2005).   DOI
54 E. Brauns, "Salinity gradient power by reverse electrodialysis: Effect of model parameters on electrical power output", Desalination, 237, 378 (2009).   DOI
55 J. N. Weinstein and F. B. Leitz, "Electric power from differences in salinity: The dialytic battery", Science, 191, 557 (1976).   DOI
56 F. Suda, T. Matsuo, and D. Ushioda, "Transient changes in the power output from the concentration difference cell (dialytic battery) between seawater and river water", Energy, 32, 165 (2007).   DOI
57 R. E. Pattle, "Production of electric power by mixing fresh and salt water in the hydroelectric pile," Nature, 174, 660 (1954).   DOI
58 K. Matsui, E. Tobita, K. Sugimoto, K. Kondo, T. Seita, and A. Akimoto, "Novel anion exchange membranes having fluorocarbon backbone: Preparation and stability", J. Appl. Polym. Sci., 32, 4137 (1986).   DOI
59 R. S. L. Yee, R. A. Rozendal, K. Zhang, and B. P. Ladewig, "Cost effective cation exchange membranes: A review, Chem. Eng. Res. Des., 90, 950 (2012).   DOI
60 E. Guler, R. Elizen, D. Vermaas, M. Saakes, and K. Nijmeijer, "Performance-determining membrane properties in reverse electrodialysis", J. Membr. Sci., 446, 266 (2013).   DOI
61 D. S. Kim, C. H. Fujimoto, M. R. Hibbs, A. Labouriau, Y.-K. Choe, and Y. S. Kim, "Resonance stabilized perfluorinated ionomers for alkaline membrane fuel cells", Macromolecules, 46, 7826 (2013).   DOI
62 J. G. Hong and Y. Chen, "Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation", J. Membr. Sci., 460, 139 (2014).   DOI
63 E. Guler, R. Elizen, M. Saakes, and K. Nijmeijer, "Micro-structured membranes for electricity generation by reverse electrodialysis", J. Membr. Sci., 458, 136 (2014).   DOI
64 P. Dlugolecki, A. Gambier, K. Nijmeijer, and M. Wessling, "Practical potential of reverse electrodialysis as process for sustainable energy generation", Environ. Sci. Technol., 43, 6888 (2009).   DOI
65 J. Veerman, R. DeJong, M. Saakes, S. Metz, and G. Harmsen, "Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density", J. Membr. Sci., 343, 7 (2009).   DOI
66 A. Elattar, A. Elmidaoui, N. Pismenskaia, C. Gavach, and G. Pourcelly, "Comparison of transport properties of monovalent anions through anion-exchange membranes", J. Membr. Sci., 143, 249 (1998).   DOI