• Title/Summary/Keyword: Current power generation

Search Result 1,270, Processing Time 0.034 seconds

Comparative Economic Analysis of RE100 Implementation Methods in South Korea (국내 RE100 이행방안의 경제성 비교분석 연구)

  • An, Sang Hyo;Woo, JongRoul
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.62-71
    • /
    • 2022
  • The Global RE100 campaign is a one of the voluntary campaign, but it has a lot of influence on domestic companies that have not yet joined the Global RE100. Accordingly, the Korean government introduced the Korean RE100 (K-RE100) system to prepare an institutional mechanism for domestic companies to respond to RE100. However, in Korea, due to the high LCOE of renewable energy and institutional limitations of the power transaction system, there is a limit for companies to implement RE100 in various ways. Therefore, in this study, the implementation cost of RE100 for green tariff, REC purchase, third-party PPA, direct(or corporate) PPA, and self-generation was compared and analyzed to derive the order of implementation with the net present value (NPV) of costs incurred over 20 years. As a result, self-construction was analyzed as the most economical method, but the implementation through the green tariff seemed to be the most realistic implementation method so far. However, considering the gradually falling LCOE, third-party PPA and direct PPA could be secured competitiveness against green tariff in 2025 and 2026. Then it could allow the companies to have various portfolios for implementation of RE100.

Integrated System of Multiple Real-Time Mission Software for Small Unmanned Aerial Vehicles (소형 무인 항공기를 위한 다중 실시간 미션 소프트웨어 통합 시스템)

  • Jo, Hyun-Chul;Park, Keunyoung;Jeon, Dongwoon;Jin, Hyun-Wook;Kim, Doo-Hyun
    • Telecommunications review
    • /
    • v.24 no.4
    • /
    • pp.468-480
    • /
    • 2014
  • The current-generation avionics systems are based on a federated architecture, where an electronic device runs a single software module or application that collaborates with other devices through a network. This architecture makes the internal system architecture very complicate, and gives rise to issues of Size, Weight, and Power (SWaP). In this paper, we show that the partitioning defined by ARINC 653 can efficiently deal with the SWaP issues on small unmanned aerial vehicles, where the SWaP issues are extremely severe. We especially install the integrated mission system on real hexacopter and quadcopter and perform successful flight tests. The presented software technology for integrated mission system and software consolidation methodology can provide a valuable reference for other SWaP sensitive real-time systems.

Perspective: Analysis of Conditions for High-efficiency/Eco-friendly Energy Production Devices for Smart Cities (스마트시티용 고효율/친환경 에너지생산장치의 조건 분석)

  • Sang Wook Kang;Jeong Uk Kim
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.46-51
    • /
    • 2023
  • The purpose of this study is to analyze the utilization forms of hydrogen fuel cells, which are the core of building a smart city, and suggest ways to solve them. In the case of power plants to utilize hydrogen fuel cell, it was analyzed as the most promising form of use in the future due to the advantage of being free from intermittence problems. However, despite many advantages, local residents' opposition continues to emerge due to concerns about explosions and the problem of carbon dioxide generation in the case of certain hydrogen production methods, and it is analyzed that resolving them will be the main key to establishing the smart city. Finally, by analyzing the current hydrogen production method and identifying the problems facing it, the solution for the complete construction of the smart city was presented.

An innovative approach for analyzing free vibration in functionally graded carbon nanotube sandwich plates

  • Shahabeddin Hatami;Mohammad J. Zarei;Seyyed H. Asghari Pari
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.19-32
    • /
    • 2024
  • Functionally graded-carbon nanotube (FG-CNT) is expected to be a new generation of materials with a wide range of potential applications in technological fields such as aerospace, defense, energy, and structural industries. In this paper, an exact finite strip method for functionally graded-carbon nanotube sandwich plates is developed using first-order shear deformation theory to get the exact natural frequencies of the plates. The face sheets of the plates are made of FG-CNT with continuous and smooth grading based on the power law index. The equations of motion have been generated based on the Hamilton principle. By extracting the exact stiffness matrix for any strip of the sandwich plate as a non-algebraic function of natural frequencies, it is possible to calculate the exact free vibration frequencies. The accuracy and efficiency of the current method is established by comparing its findings to the results of the literature works. Examples are presented to prove the efficiency of the generated method to deal with various problems, such as the influence of the length-to-height ratio, the power law index, and a core-to-face sheet thickness of the single and multi-span sandwich plates with various boundary conditions on the natural frequencies. The exact results obtained from this analysis can check the validity and accuracy of other numerical methods.

A Low-voltage CMOS CCII

  • Chatchana, Anon;Mettasitthikorn, Yot;Riewruja, Vanchai;Kamsri, Thawatchai;Wangwiwattana, Chaleompun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.951-954
    • /
    • 2003
  • A CMOS second generation current conveyor, which can be operated from a low-voltage power supply, is presented in this article. The proposed circuit is simple, small in size and suitable for implementing in standard CMOS process. It provides the resistance at port X lower than 3.5${\Omega}$. The bandwidth of the transfer characteristic extends beyond 326MHz. PSPICE simulation results demonstrating the characteristics of the proposed circuit are included.

  • PDF

New Generation Multijunction Solar Cells for Achieving High Efficiencies

  • Lee, Sunhwa;Park, Jinjoo;Kim, Youngkuk;Kim, Sangho;Iftiquar, S.M.;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.2
    • /
    • pp.31-38
    • /
    • 2018
  • Multijunction solar cells present a practical solution towards a better photovoltaic conversion for a wider spectral range. In this review, we compare different types of multi-ijunction solar cell. First, we introduce thin film multijunction solar cell include to the thin film silicon, III-V material and chalcopyrite material. Until now the maximum reported power conversion efficiencies (PCE) of solar cells having different component sub-cells are 14.0% (thin film silicon), 46% (III-V material), 4.4% (chalcopyrite material) respectively. We then discuss the development of multijunction solar cell in which c-Si is used as bottom sub-cell while III-V material, thin film silicon, chalcopyrite material or perovskite material is used as top sub-cells.

A Study for Definition and Classification of Offshore Units (해양시설 용어 정의 및 분류 체계에 관한 일고찰)

  • LIM, Youngsub;KWON, Do Joong;LEE, Chang-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.689-701
    • /
    • 2017
  • In recent offshore industries, various ambiguous terms have been used without clear definition or classification, causing difficulties in legal, technical, and educational understanding and usage. For an example, the commonly used term of 'Offshore Plant' in Korea is not an universal word technically. There has been no clear technical or legal definition about the 'Offshore Plant' and its classification is also very ambiguous; sometimes it is used to refer offshore oil and gas production platform or it is used to mean offshore renewable power generation plant in some cases. To build a conceptual framework, therefore, this paper suggests a classification of offshore units (1) using internationally agreed terms, (2) agreed with the technical classification used by the ship classification society and (3) being able to include not only the current but also future concepts of offshore units.

A study of SMOS line driver with large output swing (넓은 출력 범위를 갖는 CMOS line driver에 관한 연구)

  • 임태수;최태섭;사공석진
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.5
    • /
    • pp.94-103
    • /
    • 1997
  • It is necesary that analog buffer circuit should drive an external load in the VLSI design such as switched capacitor efilter (SCF), D/A converter, A/d converter, telecommunicatin circuit, etc. The conventional CMOS buffer circuit have many probvlems according as CMOS technique. Firstly, Capacity of large load ar enot able to opeate well. The problem can be solve to use class AB stages. But large load are operated a difficult, because an element of existing CMOS has a quadratic functional relation with inptu and outut voltage versus output current. Secondly, whole circuit of dynamic rang edecrease, because a range of inpt and output voltages go down according as increasing of intergration rate drop supply voltage. In this paper suggests that new differential CMOS line driver make out of operating an external of large load. In telecommunication's chip case transmission line could be a load. It is necessary that a load operate line driver. The proposal circuit is planned to hav ea high generation power rnage of voltage with preservin linearity. And circuit of capability is inspected through simulation program (HSPICE).

  • PDF

The State of the Art of the Fuel Cells (연료전지 기술현황)

  • Lee, Jin-Hong;ShunWoo, Hyun-Bum
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.3-12
    • /
    • 1991
  • Fuel cells are electrochemical devices that convert the chemical reaction energy directly into the electrical energy. In a typical fuel cell, gaseous fuel is fed continuously to the anode(negative electrode) compartment and the oxidant(i.e, oxygen from air) is fed continuously to the cathode(positive electrode) compartment; the electrochemical reactions take place at the electrodes to produce an electric current. Many of the operational characteristics of fuel cell systems are superior to those of conventional power generation system because of good efficiency, environmental protection, safty, modularity etc. From those reasons, the fuel cells are considered to be the solution to the future problem of energy conversion. The objective of this paper is to introduce the technical status of fuel cell technologies and our national project for the development of the phosporic acid fuel cell.

  • PDF

A Study on the Thermal Resistance Characteristics of Backfill Concrete for Underground Power Cables (지중송전 케이블 되메움 콘크리트의 열 저항 특성에 관한 연구)

  • 정원섭;권기주;김대홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.397-402
    • /
    • 2001
  • Due to the recent economic growth and the subsequent increase in demand of electricity, the construction of underground transmission line is also on the rise. Especially, in the metropolitan area, we have much obstruction in laying the line to the central district because of difficulties in procurement of construction land and the increase in the construction cost. Therefore, the necessity of increasing the capacity of transmission line has been suggested. In order to increase the capacity, the electric voltage and current intensity in size-limited lines should be also increased. But, eventually, it leads to the generation of unnecessary heat and the heat radiates through insulation cables and backfill concrete. So we need to develop the material that has good heat radiation characteristics. In this study, we developed and tested backfill concrete that can be a substitute for previously used backfill sand.

  • PDF