• Title/Summary/Keyword: Curing Environment

Search Result 246, Processing Time 0.03 seconds

The Effect of Dry Environment on Strength of Cement Mortar Immediately after Casting (성형직후 건조환경이 시멘트 모르터의 강도에 미치는 영향)

  • 오무영;김준희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.2
    • /
    • pp.61-72
    • /
    • 1991
  • This study was carried out to research the strength drop of concrete in dry environment. The mixing ratio of cement-fine aggregate was 1: 1, 1 : 2, 1: 3 and 1 : 4. The curing was compared standard curing with dry curing immediately after casting. It is analysis of strength change by water-proof mixing. The curing age of cement mortar was 3days, 7days, l4days and 28days. The result obtained from this study are summarized as follows. 1. The compressive and bending strength change by increasing the curing age, dry curing mortar the increasing rate of strength was decreased than standard curing mortar. 2. The compressive and bending strength change in early curing, strength difference between standard curing mortar and dry curing motar was gradually closed by increasing the W/C. 3. The dry curing mortar was decreased than standard curing mortar in decreasing rate of compressive and bending strength by increasing the W/C. 4. The compressive strength of water-proof mortar in early curing, liquid water-proof mortar was shown high strength in dry curing than standard curing. The powder and liquid water-proof mortar have a small effect in dry environment. The liquid water-proof mortar was high strength without relation change of curing age in dry environment than standard curing. 5. The compressive strength of liquid water-proof mortar in poverty mix, dry curing was shown high strength than standard curing. 6. The bending strength was increased than compressive strength by decreasing the volume of cement in early curing. The increasing rate of bending strength was decreased to compressive stength by increasing the curing age.

  • PDF

The Study on the Strength Properties of High Volume Fly-Ash Concrete (플라이애시를 다량 사용한 콘크리트의 강도특성에 관한 연구)

  • Paik, Min-Su;Lee, Young-Do;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.4
    • /
    • pp.169-176
    • /
    • 2002
  • To study of binder and fine aggregate a lot of replacement fly-ash concrete, initial characteristics, standard environment of curing temperature $20^{\circ}C$, hot-weather environment, cold weather environment of curing temperature $5^{\circ}C$. Flash concrete tested slump, air contest, setting and Hardening concrete valuated setting period of form, day of age 3, 7, 28 compression strength in sealing curing. Underwater curing specimen compression strength of age 3. 7, 28day used strength change accordingly fly-ash concrete curing temperature. Purpose of study is consultation materials in field that variety of fly-ash replacement concrete mix proportion comparison and valuation. (1) Setting test result, fly-ash ratio of replacement higher delay totting time. Same volume of fly-ash ratio of replacement is lower fly-ash ratio of replacement fine aggregate delay setting time. Setting test in curing temperature $35^{\circ}C$ over twice fast setting in curing temperature $20^{\circ}C$ and all specimen setting delay in curing temperature $5^{\circ}C$. F40 specimen end of setting about 30 time. (2) Experiment result age 28day compression strength more fisher plan concrete then standard environment in curing temperature $20^{\circ}C$, cold weather environment in curing temperature $5^{\circ}C$, most strength F43 is hot-weather environment in curing temperature $35^{\circ}C$ replacement binder 25%, fine aggregate 15%. (3) Hot-weather environment replacement a mount of fly-ash is a same of plan concrete setting period of form. Age 28day compression strength replacement a mount of fly-ash more hot-weather concrete then plan concrete.

The Experimental Study on Early Strength Properties of High Volume Fly-Ash Concrete (플라이애쉬를 다량 치환한 콘크리트의 초기강도성상에 관한 실험적 연구)

  • 이동하;김상미;강태경;백민수;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.281-286
    • /
    • 2002
  • To study of binder and fine aggregate a lot of replacement fly-ash concrete, initial characteristics, standard environment of curing temperature $20^{\circ}C$, hot-weather environment of curing temperature $35^{\circ}C$, . Flesh concrete tested slump. air contest and Hardening concrete valuated setting period of form, day of age 1, 3, 5. 7, 10, 28 compression strength in sealing curing. Purpose of study is consultation materials in field that variety of fly-ash replacement concrete mix proportion comparison and valuation. (1) Experiment result age 28day compression strength more higher plan concrete then standard environment in curing temperature $20^{\circ}C$, , most strength F43 is hot-weather environment in curing temperature $35^{\circ}C$, replacement binder 25%, fine aggregate 15%. (2) Hot-weather environment replacement a mount of fly-ash is a same of plan concrete setting period of form. Age 28day compression strength replacement a mount of fly-ash more hot-weather concrete then plan concrete.

  • PDF

Recovery of mortar-aggregate interface of fire-damaged concrete after post-fire curing

  • Li, Lang;Zhang, Hong;Dong, Jiangfeng;Zhang, Hongen;Jia, Pu;Wang, Qingyuan;Liu, Yongjie
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.249-258
    • /
    • 2019
  • In order to investigate the strength recovery of fire-damaged concrete after post-fire curing, concrete specimens were heating at $2^{\circ}C/min$ or $5^{\circ}C/min$ to 400, 600 and $800^{\circ}C$, and these exposed specimens were soaked in the water for 24 hours and following by 29-day post-fire curing. The compressive strength and split tensile strength of the high-temperature-exposed specimens before and after post-fire curing were tested. The proportion of split aggregate in the split surfaces was analyzed to evaluate the mortar-aggregate interfacial strength. After the post-fire curing process, the split tensile strength of specimens exposed to all temperatures was recovered significantly, while the recovery of compressive strength was only obvious within the specimens exposed to $600^{\circ}C$. The tensile strength is more sensitive to the mortar-aggregate interfacial cracks, which caused that the split tensile strength decreased more after high-temperature exposure and recovery more after post-fire curing than the compressive strength. The mortar-aggregate interfacial strength also showed remarkable recovery after post-fire curing, and it contributed to the recovery of split tensile strength.

Effect of Wet Curing Duration on Long-Term Performance of Concrete in Tidal Zone of Marine Environment

  • Khanzadeh-Moradllo, Mehdi;Meshkini, Mohammad H.;Eslamdoost, Ehsan;Sadati, Seyedhamed;Shekarchi, Mohammad
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.487-498
    • /
    • 2015
  • A proper initial curing is a very simple and inexpensive alternative to improve concrete cover quality and accordingly extend the service life of reinforced concrete structures exposed to aggressive species. A current study investigates the effect of wet curing duration on chloride penetration in plain and blended cement concretes which subjected to tidal exposure condition in south of Iran for 5 years. The results show that wet curing extension preserves concrete against high rate of chloride penetration at early ages and decreases the difference between initial and long-term diffusion coefficients due to improvement of concrete cover quality. But, as the length of exposure period to marine environment increased the effects of initial wet curing became less pronounced. Furthermore, a relationship is developed between wet curing time and diffusion coefficient at early ages and the effect of curing length on time-to-corrosion initiation of concrete is addressed.

Effect of Curing Conditions on the ASR of Lightweight Aggregate Concrete (양생조건이 경량골재 콘크리트의 ASR에 미치는 영향)

  • 성찬용;김성완;민정기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.38-46
    • /
    • 1993
  • This study is to analyze effect of exposure environment and mode of ASR on the engineering properties of synthetic lightweight aggregate concrete, such as dynamic modulus of elasticity and ultrasonic pulse velocity. The results of this study are summarized as foflows ; 1. The expansion rate of each exposure environment in 380$^{\circ}$C and NaCI 4% solution was shown higher than in 20$^{\circ}$C and normal water. The expansion rate of each exposure mode was largely shown in order of fjill immersion, wetting/drying, half immersion. 2. The dynamic modulus of elasticty and ultrasonic pulse velocity of each exposure environment in 38$^{\circ}$C and NaCl 4% solution was shown less than in 20$^{\circ}$C and normal water. The dynamic modulus of elasticity and ultrasonic pulse velocity of each exposure mode was shown smaller in order of full immersion, wetting/drying, half imersion.3. The relation between dynamic modulus of elasticity and ultrasonic pulse velocity was highly significant. The dynamic modulus of elasticity was increased with increase of ultrasonic pulse velocity. The decreasing rate of the dynamic modulus of elasticity was shown 2.1~3.4 times higher than the ultrasonic pulse velocity at each age, exposure environment and mode, respectively. 4. The expansion of each exposure environment and mode was increased with increase of curing age. The dynamic modulus of elasticity and ultrasonic pulse velocity of those concrete was increased with increase of curing age. At the curing age 28 days, the highest properties was showed at each type concrete, it was gradually decreased with increase of curing age. Specially, at the curing age 98 days of full immersion, the rate of expansion of type D was shown 3.95 times higher than the type A. But the dynamic modulus of elasticity and ultrasonic pulse velocity was decreased 17% and 8.3%.

  • PDF

An experimental Study for the Maximun Curing Temperature Effect on the Freezing and Thawing of Steam Curing Concrete (증기양생콘크리트의 최고양생온도변화가 콘크리트의 동결융해저항성에 미치는 영향)

  • Youn, Suk;Choi, Se-Gyu;Kim, Dong-Sin;Yu, Sung-Yong;Kim, Saeng-Bin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.170-176
    • /
    • 1997
  • The published works on steam curing effect have been generally concentrated on the subject, "compressive strength". However a practical test for durable steam curing concrete products has not been performed in domestic. In this study, the maximum temperature of steam is considered as a major variable to investigate the freezing and thawing resistance of the steam curing concrete. All of the specimen were cured for 24 hours which included presteaming 4 hour. Finally we found that the most effective curing condition is the case of one-day and 14-day specimens after the 24 hours steam curing at $74^{\cire}C$ degree curing temperature. It is also found that the durability of one-day samples are much weaker than those of 14-day samples. Consequently, we can conclude that the samples that produced immediately after a steam curing are more possible to deteriorate from the freezing and thawing environment.vironment.

  • PDF

A study of a plan for better curing methods through a reseach for a field of construction work (동절기 콘크리트 양생방법의 현장 실태조사 및 개선방안에 관한 연구)

  • Park Sung-June;Moon Hyung-Soo;Kim Chang-Duk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.379-382
    • /
    • 2003
  • Construction concrete needs to maintain suitable environment which contains temperature and humidity etc. Then concrete shows own strength. The environment is not regular and contains many variables. Especially the climate element occupies many parts of variables. We have the climate environment which goes down to $-4^{\circ}C$. The factor that obstruct to construction is the failure at a construction progress. But it must be processed to be scheduled. Therefore we have to do the special care for factor of climate that obstruct to construction. We must make assurance doubly sure at the quality of concrete. We need maintenance of temperature and humidity for the hardening until the requirement period after a concrete pured in. We must do the care of curing sufficiently not to take the influence of injurious activity. This causes strength of concrete. Specific method of curing is according to each situation which is environment element. We wish to analyze curing course in construction of concrete at the paper. Also we wish to predict the problem as to consider curing and suggest the improvement plan through the paper.

  • PDF

Analysis of Installation Environment and Fire Risk of Induction Motors Installed in the Curing Process of a Rubber Product Manufacturing Plant (고무제품제조공장의 가류공정에 설치된 유도전동기의 설치환경 및 화재위험성 분석)

  • Jong-Chan Lee;Doo-Hyun Kim;Sung-Chul Kim
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.23-29
    • /
    • 2023
  • This study analyzed the fire status of a rubber product manufacturing factory based on 19 years of fire data. Through the analysis of the current state of fire, electrical fires accounted for 58.19%, and among electrical fires, motor fires were the highest at 26.21%. For the motor fire occurrence process, the curing process accounted for the highest rate of 51.9%. Therefore, the installation environment was investigated for the motor in the curing process, and it was confirmed that the motor's maximum ambient temperature exceeded 40℃. In particular, in the case of the motor for curing operation, the motor was installed in a separate motor room, so the average indoor temperature was 48.10℃ and the motor frame's maximum temperature was 72.80℃. In this study, the risk of motor fire was confirmed through a field survey, and a safety management plan was derived by finding a process with high fire risk and conducting an experiment on the motor's installation environment and electrical characteristics in that process.

Effect of Curing on Positive Plate Behavior in Lead-Acid Battery (숙성조건에 따른 연축전지용 양극 극판의 특성 연구)

  • 김상필;남기윤
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.177-181
    • /
    • 1995
  • Lead-acid battery is used widely as a power source in the automobile, industrial machines, folk lifts U.P.S etc. But this battery has man\ulcorner disadvantages such as heavy low energy density, environment problem etc. In this paper, we have studied the physicochemical and electrochemical properties of lead-acid battery positive plates with regard to the method of curing. It has been observed that curing conditions strongly influence electrode composition and electrchemical performance.

  • PDF