• Title/Summary/Keyword: Cultured myocardial cells

Search Result 33, Processing Time 0.023 seconds

Effects of Guaruhaebaekbanha-tang Extract on Beating Rate and LDH Activity in Cultured Rat Myocardial Cells (과루해백반하탕 추출물이 배양 심근세포의 박동수와 LDH 활성도에 미치는 영향)

  • An Hyo Chang;Kwon Kang Beam;Park Eun Young;Jang Seung Ho;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.289-295
    • /
    • 2002
  • To certify the protective effect of herbal medicine against oxygen free radical-induced myocardiotoxicity, cytotoxicity was measured using MTT, LDH activity and Beating rate assay in the presence of Guaruhaebaekbanha-tang(GHBT) extracts or single constituents of this prescription. Myocardial toxicity was evaluated in neonatal rat myocardiocytes in cultures. In the present study, xanthine oxidase/hypoxanthine(XO/HX) resulted in a decrease in cell viability, increases in LDH activity in culture medium and decreases in beating rate in cultured myocardial cells. In the effect of GHBT extract, it showed the prevention from the XO/HX-induced cardiotoxicity by the increases of cell viability and beating rate as well as the decrease of LDH activity. In the protective effect of Fructus Trichosanthis(FT), Bulbus Allii Macrostemi(BAM) and Rhizoma Pinelliae(RP), all the extracts were significantly effective in the protection of XO/HX-induced cardiotoxocity in cultured myocardial cells by the increase of beating rate as well as th decrease of LDH activity. From these results, they show that XO/HX is cardiotoxic in cultured myocardial cells derived from neonatal rat, and it suggests that GHBT, FT, SAM, RP extracts are positively effective in the blocking in XO/HX-induced cardiotoxicity.

Effects of Tongryeong-san and Constituents Extract in Cultured Rat Myocardial Cells (통령산과 구성약물 추출물이 배양 심근세포에 미치는 영향)

  • Seong Eun Kyung;Kwon Kang Beom;Kim In Su;Kang Gil Seong;Kim In Gyu;Kim In Seob;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.1031-1036
    • /
    • 2003
  • To certify the protective effect of herbal medicine against oxygen free radical-induced myocardiotoxicity, cytotoxicity was measured using TBARS assay and Beating rate in the presence of Tongryeong-san(TRS) extracts or single constituents of this prescription. Myocardial toxicity was evaluated in neonatal rat myocardiocytes in cultures. In the present study, xanthine oxidase/hypoxanthine (XO/HX) resulted in a increase in lipid peroxidation and decreases in beating rate in cultured myocardial cells. In the effect of TRS extract, it showed the prevention from the XO/HX-induced cardiotoxicity by the increases of beating rate as well as the decrease of lipid peroxidation, In the protective effect of Faeces Trogopterori(FT), Pollen Typhae(PT), Caulis Akebiae(CA) and Radix Paeoniae Rubra(PRR), all the extracts were significantly effective in the protection of XO/HX-induced cardiotoxocity in cultured myocardial cells by the increase of beating rate as well as th decrease of lipid peroxidation. From these results, they show that XO/HX is cardiotoxic in cultured myocardial cells derived from neonatal rat, and it suggests that TRS, FT, PT, CA and PRR extracts are positively effective in the blocking in XO/HX-induced cardiotoxicity.

Protective Effects of Guaruhaebaekbaekju-tang Extract in XO/HX-treated Rat Myocardial Cells (XO/HX에 의하여 손상된 심근세포에 대한 과루해백백주탕 추출물의 방어효과)

  • Park Jun Su;Kwon Kang Beom;Moon Hyoung Chul;Kim In Su;Kang Gil Seong;Kim In Gyu;Kim In Seob;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.486-492
    • /
    • 2003
  • To certify the protective effect of herbal medicine on myocardial damage against oxygen free radical-induced myocardiotoxicity, cytotoxicity was measured using by MTT assay, LDH activity and thiobarbituric acid reactive substances(TBARS) assay in the presence of Guaruhaebaekbaekju-tang(GHBT) extracts or single constituents of this prescription, Myocardial toxicity was evaluated in neonatal rat myocardiocytes in cultures. In the present study, xanthine oxidase/hypoxanthine (XO/HX) resulted in a decrease in cell viability, an increase in LDH activity in culture medium and lipid peroxidation in cultured myocardial cells, In the effect of GHBT extract, it showed the prevention from the XO/HX-induced cardiotoxicity such as the decrease of LDH activity and lipid peroxidation. In the protective effect of Fructus Trichosanthis (FT) and Bulbus Allii Macrostemi (BAM), all the extracts were significantly effective in the protection of XO/HX-induced cardiotoxocity in cultured myocardial cells. From these results, they show that XO/HX is cardiotoxic in cultured myocardial cells derived from neonatal rats, and it suggests that GHBT, FT and BAM extracts are positively effective in the blocking XO/HX-induced cardiotoxicity.

Effects of Rhizoma Coptidis Water Extract in Cultured Rat Myocardial Cells (황연 추출물이 산소자유기에 의해 손상된 배양 심근세포에 미치는 영향)

  • Yang Sang Cheol;Kwon Kang Beam;Cho Hyun Ik;Min Young Gi;Heo Jae Hyuk;Kim Gu Hwan;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.955-959
    • /
    • 2002
  • To test the protective effect of herbal medicine on myocardial damage against oxygen free radical-induced myocardiotoxicity, cytotoxicity was examined using MTT, Beating rate and TSARS assay in the presence of water extract of Rhizoma Coptidis. Myocardial toxicity was evaluated in neonatal rat myocardiocytes in cultures. The results of these experiments were obtained as follows: Xanthine oxydase/hypoxanthine resulted in a decrease in viability, beating rate and in a increase in lipid peroxidation in Cultured myocardial cells. Rhizoma Coptidis water extract shows effects of protection from the cardiocyte toxicity induced by xanthine oxydase/hypoxanthine treatment such as increases in beating rate. Rhizoma Coptidis water extract shows effects of protection from the cardiocyte toxicity induced by xanthine oxydase/hypoxanthine treatment such as decreases in lipid peroxidation. These results show that xanthine oxydase/hypoxanthine elicits toxic effects. in cultured myocardial cells derived from neonatal rat, and suggest that water extract of Rhizoma Coptidis is very effective in the prevention of xanthine oxydase/hypoxanthine-induced cardiotoxicity.

Effects of three kinds of Radix Rehmanniae Water Extract in Cultured Rat Myocardial Cells (삼종 지황 추출물이 배양 심근세포에 미치는 영향)

  • Hwang In Jin;Kwon Kang Beom;Cho Hyun Ik;Min Young Gi;Heo Jae Hyuk;Kim Gu Hwan;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.6
    • /
    • pp.1117-1121
    • /
    • 2002
  • To test the protective effect of herbal medicine on myocardial damage against oxygen free radical-induced myocardiotoxicity, cytotoxicity was examined using MTT, Beating rate and DNA synthesis assay in the presence of water extract of three kinds of Radix Rehmanniae. Myocardial toxicity was evaluated in neonatal rat myocardiocytes in cultures. The results of these experiments were obtained as follows : Xanthine oxydase/hypoxanthine resulted in a decrease in viability, beating rate and DNA synthesis in cultured myocardial cells. Radix Rehmanniae Recens(生地黃, RRR) water extract shows effects of protection from the cardiocyte toxicity induced by xanthine oxydase/hypoxanthine treatment such as increases in beating rate. Radix Rehmanniae Preparat(熟地黃, RRP) water extract shows effects of protection from the cardiocyte toxicity induced by xanthine oxydase/hypoxanthine treatment such as increases in DNA synthesis. These results show that xanthine oxydase/hypoxanthine elicits toxic effects in cultured myocardial cells derived from neonatal rat, and suggest that water extract of three kinds of Radix Rehmanniae is very effective in the prevention of xanthine oxydase/hypoxanthine-induced cardiotoxicity.

Effects of Sujeom-san Water Extract in Cultured Rat Myocardial Cells (수념산 전탕액이 배양 심근세포에 미치는 영향)

  • Jean Young Seok;Kwon Kang Beam;Park Eun Young;Soong Eun Kyung;Park Seung Taeck;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.353-358
    • /
    • 2002
  • To test the protective effect of herbal medicine against oxygen free radical-induced myocardiotoxicity, cytotoxicity of xanthine oxidase/hypoxanthine (XO/HX) was examined using MTT, TBARS, and beating rate assay in the presence of water extract of Sujeom-san(SJS) or single consituents of its prescription. Myocardial toxicity was evaluated in neonatal rat myocardiocytes in cultures. In the present paper, XO/HX resulted in a decrease in viability and beating rate and increases in lipid peroxidation in cultured myocardial cells. In the effect of SJS water extract, it showed effects from the cardiocytotoxicity induced by XO/HX treatment such as increases in beating rate and decreases in lipid peroxidation. In the effect of Rhizoma Corydalis (RC), Faeces Trogopterori (FT), Fructus Amomi Tsaoko (FAT) and Myrrha on the cardiocytotoxicity, they were significantly effective in blocking the XO/HX-induced cardiocytotoxicity by increase of beating rate in FAT and FT group as well as decrease of lipid peroxidation in FT and RC group. These results show that oxygen free radical elicits toxic effects in cultured myocardial cells derived from neonatal rat, and suggest that water extract of Sujeomsan, Rhizoma Corydalis, Faeces Trogopterori, Fructus Amomi Tsaoko or Myrrha is very effective in the prevention of xanthine oxidase/hypoxanthine- induced cardiotoxicity.

Effects of Talmyung-san on the Cultured Rat Myocardiac Cell and Vascular Smooth Muscle Cell (탈명산(奪命散)이 배양심근세포(培養心筋細胞) 및 혈관평골근세포(血管平滑筋細胞)에 미치는 영향(影響))

  • Seong, Gang-Gyeong;Bag, Se-Hong
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.46-54
    • /
    • 2000
  • Objectives : Talmyung-san(TMS) has been used for treatment of brain diseases in Chinese traditional medicine. However, little is known about the mechanism by which TMS rescues brain cells from ischemic damages. To elucidate the protective mechanisms of TMS, we execute experiments. Methods : The effects of TMS on ischemia/reperfusion-induced cytotoxicity and generation of nitric oxide(NO) are investigated in primary neonatal myocardial cells and A7rS, aortic smooth muscle cell line. Results : Ischemia/reperfusion itself induces severe myocardial cell death in vitro. However, treatment of the cells with TMS significantly reduces both ischemia/reperfusion-induced myocardial cell death and LDH release. In addition, pretreatment of TMS before reperfusion recovers the lose of beating rates alter ischemia/reperfusion. For a while, the water extract of TMS stimulates myocardial cells to produce NO in a dose dependent manner and it protects the damage of ischemia/reperfusion-induced myocardial cells. Furthermore, the protective effects of the water extract of TMS is mimicked by treatment of sodium nitroprusside, an exogenous NO donor. NG-monomethyl-L-arginine (NGMMA), a specific inhibitor of nitric oxide synthase(NOS), significantly blocks the protective effects of TMS on the cells after ischemia/reperfusion. In addition, on ischemia the water extract of TMS induce NO in A7r5 cell. Conclusions : Taken together, we suggest that the protective effects of TMS against ischemia/reperfusion-induced myocardial damages may be mediated by NO production of myocardial and vascular smooth muscle cell during ischemic condition.

  • PDF

Protective Effects of Jisilhaebaekgyeji-tang and Constituents Extract on Cultured Rat Myocardial Cell treated by XO/HX (XO/HX에 의해 손상된 배양 심근세포에 대한 지실해백계지탕과 구성약물 추출물의 방어효과)

  • Jang Seung Ho;Kwon Kang Beom;Kim In Su;Kang Gil Seong;Kim In Gyu;Kim In Seob;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.952-957
    • /
    • 2003
  • To certify the protective effect of herbal medicine against oxygen free radical-induced myocardiotoxicity, cytotoxicity was measured using LDH activity and TBARS assay in the presence of Jisilhaebaekgyejitang(JHGT) extracts or single constituents of this prescription, In the present study, xanthine oxidase/hypoxanthine (XO/HX) resulted in a cell damage such as increases in LDH activity in culture medium and lipid peroxidation in cultured myocardial cells. In the effect of JHGT extract and its single constituents, which are Fructus Ponciri Seu Aurantii Immaturus (FPSAI), Cortex Magnoliae Officinalis (CMO), Bulbus Allii Macrostemi (BAM), Ramulus Cinnamomi (RC) and Fructus Trichosanthis (FT), they showed the prevention from the XO/HX-induced cardiotoxicity by the decrease of LDH activity and lipid peroxidation. From these results, they show that XO/HX is cardiotoxic in cultured myocardial cells derived from neonatal rat, and it suggests that JHGT, FPSAI, PT, CMO, BAM, RC and FT extracts are positively effective in the blocking in XO/HX-induced cardiotoxicity.

Acetaminophen Induced Cytotoxicity and Altered Gene Expression in Cultured Cardiomyocytes of $H_9C_2$ Cells

  • Jin, Seon-Mi;Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.11.1-11.8
    • /
    • 2012
  • Objectives: Hepatotoxicity of acetaminophen has been widely studied. However, the adverse effects on the heart have not been sufficiently evaluated. This study was performed to investigate cytotoxicity and alterations of gene expression in cultured cardiomyocytes ($H_9C_2$ cells) after exposure to acetaminophen. Methods: $H_9C_2$ cells were incubated in a 10 mM concentration of acetaminophen for the designated times (6, 12, and 24 hours), and cytotoxicity was determined by the 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. Alteration of gene expression was observed by microarray analysis, and RT-PCR was performed for the three representative oxidative stress-related genes at 24 hours after treatment. Results: It revealed that acetaminophen was toxic to cardiomyocytes, and numerous critical genes were affected. Induced genes included those associated with oxidative stress, DNA damage, and apoptosis. Repressed genes included those associated with cell proliferation, myocardial contraction, and cell shape control. Conclusions: These findings provide the evidences of acetaminophen-induced cytotoxicity and changes in gene expression in cultured cardiomyocytes of $H_9C_2$ cells.

In Vivo Protein Transduction: Delivery of PEP-1-SOD1 Fusion Protein into Myocardium Efficiently Protects against Ischemic Insult

  • Zhang, You-en;Wang, Jia-ning;Tang, Jun-ming;Guo, Ling-yun;Yang, Jian-ye;Huang, Yong-zhang;Tan, Yan;Fu, Shou-zhi;Kong, Xia;Zheng, Fei
    • Molecules and Cells
    • /
    • v.27 no.2
    • /
    • pp.159-166
    • /
    • 2009
  • Myocardial ischemia-reperfusion injury is a medical problem occurring as damage to the myocardium following blood flow restoration after a critical period of coronary occlusion. Oxygen free radicals (OFR) are implicated in reperfusion injury after myocardial ischemia. The antioxidant enzyme, Cu, Zn-superoxide dismutase (Cu, Zn-SOD, also called SOD1) is one of the major means by which cells counteract the deleterious effects of OFR after ischemia. Recently, we reported that a PEP-1-SOD1 fusion protein was efficiently delivered into cultured cells and isolated rat hearts with ischemia-reperfusion injury. In the present study, we investigated the protective effects of the PEP-1-SOD1 fusion protein after ischemic insult. Immunofluorescecnce analysis revealed that the expressed and purified PEP-1-SOD1 fusion protein injected into rat tail veins was efficiently transduced into the myocardium with its native protein structure intact. When injected into Sprague-Dawley rat tail veins, the PEP-1-SOD1 fusion protein significantly attenuated myocardial ischemia-reperfusion damage; characterized by improving cardiac function of the left ventricle, decreasing infarct size, reducing the level of malondialdehyde (MDA), decreasing the release of creatine kinase (CK) and lactate dehydrogenase (LDH), and relieving cardiomyocyte apoptosis. These results suggest that the biologically active intact forms of PEP-1-SOD1 fusion protein will provide an efficient strategy for therapeutic delivery in various diseases related to SOD1 or to OFR.