Browse > Article
http://dx.doi.org/10.1007/s10059-009-0020-4

In Vivo Protein Transduction: Delivery of PEP-1-SOD1 Fusion Protein into Myocardium Efficiently Protects against Ischemic Insult  

Zhang, You-en (Institute of Clinical Medicine, Renmin Hospital, Yunyang Medical College)
Wang, Jia-ning (Institute of Clinical Medicine, Renmin Hospital, Yunyang Medical College)
Tang, Jun-ming (Institute of Clinical Medicine, Renmin Hospital, Yunyang Medical College)
Guo, Ling-yun (Institute of Clinical Medicine, Renmin Hospital, Yunyang Medical College)
Yang, Jian-ye (Institute of Clinical Medicine, Renmin Hospital, Yunyang Medical College)
Huang, Yong-zhang (Institute of Clinical Medicine, Renmin Hospital, Yunyang Medical College)
Tan, Yan (Institute of Clinical Medicine, Renmin Hospital, Yunyang Medical College)
Fu, Shou-zhi (Department of Emergency, Renmin Hospital, Yunyang Medical College)
Kong, Xia (Institute of Clinical Medicine, Renmin Hospital, Yunyang Medical College)
Zheng, Fei (Institute of Clinical Medicine, Renmin Hospital, Yunyang Medical College)
Abstract
Myocardial ischemia-reperfusion injury is a medical problem occurring as damage to the myocardium following blood flow restoration after a critical period of coronary occlusion. Oxygen free radicals (OFR) are implicated in reperfusion injury after myocardial ischemia. The antioxidant enzyme, Cu, Zn-superoxide dismutase (Cu, Zn-SOD, also called SOD1) is one of the major means by which cells counteract the deleterious effects of OFR after ischemia. Recently, we reported that a PEP-1-SOD1 fusion protein was efficiently delivered into cultured cells and isolated rat hearts with ischemia-reperfusion injury. In the present study, we investigated the protective effects of the PEP-1-SOD1 fusion protein after ischemic insult. Immunofluorescecnce analysis revealed that the expressed and purified PEP-1-SOD1 fusion protein injected into rat tail veins was efficiently transduced into the myocardium with its native protein structure intact. When injected into Sprague-Dawley rat tail veins, the PEP-1-SOD1 fusion protein significantly attenuated myocardial ischemia-reperfusion damage; characterized by improving cardiac function of the left ventricle, decreasing infarct size, reducing the level of malondialdehyde (MDA), decreasing the release of creatine kinase (CK) and lactate dehydrogenase (LDH), and relieving cardiomyocyte apoptosis. These results suggest that the biologically active intact forms of PEP-1-SOD1 fusion protein will provide an efficient strategy for therapeutic delivery in various diseases related to SOD1 or to OFR.
Keywords
Cu; Zn-SOD cell-penetrating peptide; free radicals; Myocardial-reperfusion injury; PEP-1 peptide;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
1 Deshayes, S., Morris, M.C., Divita, G., and Heitz, F. (2005). Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell Mol. Life Sci. 62, 1839-1849   DOI
2 Dong, X., Wang, J.N., Huang, Y.Z., Guo, L.Y., and Kong, X. (2007). Cell-penetrating peptide PEP-1-mediated transduction of enhanced green fluorescent protein into human umbilical vein endothelial cells. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 29, 93-97   PUBMED
3 Eum, W.S., Kim, D.W., Hwang, I.K., Yoo, K.Y., Kang, T.C., Jang, S.H., Choi, H.S., Choi, S.H., Kim, Y.H., Kim, S.Y., et al. (2004). In vivo protein transduction: biologically active intact pep-1- superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic. Biol. Med. 37, 1656-1669   DOI   ScienceOn
4 Gustafsson, A.B., Sayen, M.R., Williams, S.D., Crow, M.T., and Gottlieb, R.A. (2002). TAT protein transduction into isolated perfused hearts: TAT-apoptosis repressor with caspase recruitment domain is cardioprotective. Circulation 106, 735-739   DOI
5 Hwang, I.K., Eum, W.S., Yoo, K.Y., Cho, J.H., Kim, D.W., Choi, S.H., Kang, T.C., Kwon, O.S., Kang, J.H., Choi, S.Y., et al. (2005). Copper chaperone for Cu, Zn-SOD supplement potentiates the Cu,Zn-SOD function of neuroprotective effects against ischemic neuronal damage in the gerbil hippocampus. Free Radic. Biol. Med. 39, 392-402   DOI   ScienceOn
6 Jin, L.H., Bahn, J.H., Eum, W.S., Kwon, H.Y., Jang, S.H., Han, K.H., Kang, T.C., Won, M.H., Kang, J.H., Cho, S.W., et al. (2001). Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells. Free Radic. Biol. Med. 31, 1509-1519   DOI   ScienceOn
7 McCord, J.M., and Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049-6055
8 Morris, M.C., Depollier, J., Mery, J., Heitz, F., and Divita, G. (2001). A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol. 19, 1173-1176   DOI   ScienceOn
9 Nelson, S.K., Bose, S.K., Grunwald, G.K., Myhill, P., and McCord, J.M. (2006). The induction of human superoxide dismutase and catalase in vivo a fundamentally new approach to antioxidant therapy. Free Radic. Biol. Med. 40, 341-347   DOI   ScienceOn
10 Prochiantz, A. (2000). Messenger proteins: homeoproteins, TAT and others. Curr. Opin. Cell Biol. 12, 400-406   DOI   ScienceOn
11 Vives, E., Brodin, P., and Lebleu, B. (1997). A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272, 16010-16017   DOI   ScienceOn
12 Sayre, L.M., Smith, M.A., and Perry, G. (2001). Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr. Med. Chem. 8, 721-738   DOI   ScienceOn
13 Su, J., and Kwon, H. (2003). Simultaneous determination of 4-hydroxy-2-alkenals, lipid peroxidation toxic products. Food Addit. Contam. 20, 325-330   DOI   ScienceOn
14 Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini, D., and Milzani, A. (2006). Biomarkers of oxidative damage in human disease. Clin. Chem. 52, 601-623   DOI   PUBMED   ScienceOn
15 Jenner, P. (2003). Oxidative stress in Parkinson's disease. Ann. Neurol. 53 Suppl 3, S26-36   DOI   PUBMED
16 Finkel, T. (2003). Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15, 247-254   DOI   ScienceOn
17 Fawell, S., Seery, J., Daikh, Y., Moore, C., Chen, L.L., Pepinsky, B., and Barsoum, J. (1994). Tat-mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91, 664-668   DOI
18 Frankel, A.D., and Pabo, C.O. (1988). Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55, 1189-1193   DOI   ScienceOn
19 Nathan, C. (2003). Specificity of a third kind: reactive oxygen and nitrogen intermediates in cell signaling. J. Clin. Invest. 111, 769-778   DOI
20 Schwarze, S.R., and Dowdy, S.F. (2000). In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends Pharmacol. Sci. 21, 45-48   DOI   ScienceOn
21 Henriques, S.T., Melo, M.N., and Castanho, M.A. (2006). Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem. J. 399, 1-7   DOI
22 Choi, H.S., An, J.J., Kim, S.Y., Lee, S.H., Kim, D.W., Yoo, K.Y., Won, M.H., Kang, T.C., Kwon, H.J., Kang, J.H., et al. (2006). PEP-1-SOD fusion protein efficiently protects against paraquatinduced dopaminergic neuron damage in a Parkinson disease mouse model. Free Radic. Biol. Med. 41, 1058-1068   DOI   ScienceOn
23 Simes, J., Furberg, C.D., Braunwald, E., Davis, B.R., Ford, I., Tonkin, A., and Shepherd, J. (2000). Effects of pravastatin on mortality in patients with and without coronary heart disease across a broad range of cholesterol levels. The prospective pravastatin pooling project. Eur. Heart J. 23, 207-215   DOI   ScienceOn
24 Choi, S.H., Kim, D.W., Kim, S.Y., An, J.J., Lee, S.H., Choi, H.S., Sohn, E.J., Hwang, S.I., Won, M.H., Kang, T.C., et al. (2005). Transduced human copper chaperone for Cu,Zn-SOD (PEP-1-CCS) protects against neuronal cell death. Mol. Cells 20, 401-408   PUBMED
25 Yellon, D.M., and Baxter, G.F. (2000). Protecting the ischaemic and reperfused myocardium in acute myocardial infarction: distant dream or near reality? Heart 83, 381-387   DOI   PUBMED
26 An, J.J., Lee, Y.P., Kim, S.Y., Lee, S.H., Kim, D.W., Lee, M.J., Jeong, M.S., Jang, S.H., Kang, J.H., Kwon, H.Y., et al. (2008). Transduction of familial amyotrophic lateral sclerosis-related mutant PEP-1-SOD proteins into neuronal cells. Mol. Cells 25, 55-63   PUBMED
27 Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47-95   DOI   PUBMED
28 Haunstetter, A., and Izumo, S. (1998). Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ. Res. 82, 1111-1129   DOI   PUBMED
29 Wang, J.N., Ding, P., Huang, Y.Z., Luo, L.N., Guo, L.Y., Kong, X., and Shao, F. (2007). The protective effect of PEP-1-SOD1 preconditioning on hypoxia/reoxygenation injury in cultured human umbilical vein endothelial cells. Zhonghua Xin Xue Guan Bing Za Zhi. 35, 750-756   PUBMED
30 Dhalla, N.S., Temsah, R.M., and Netticadan, T. (2000). Role of oxidative stress in cardiovascular diseases. J. Hypertens. 18, 655-673   DOI   PUBMED   ScienceOn
31 Kumar, D., and Jugdutt, B.I. (2003). Apoptosis and oxidants in the heart. J. Lab. Clin. Med. 142, 288-297   DOI   ScienceOn