• Title/Summary/Keyword: Cultured astrocytes

Search Result 56, Processing Time 0.02 seconds

Regulation of c-Fos and c-Jun Gene Expression by Lipopolysaccharide and Cytokines in Primary Cultured Astrocytes: Effect of PKA and PKC Pathways

  • Suh Hong-Won;Choi Seong-Soo;Lee Jin-Koo;Lee Han-Kyu;Han Eun-Jung;Lee Jongho
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.396-401
    • /
    • 2004
  • The effects of lipopolysaccharide (LPS) and several cytokines or the c-fos and c-jun mRNA expression were examined in primary cultured astrocytes. Either LPS (500 ng/mL) or inter-feron-$\gamma$ (IFN-$\gamma$ 5 ng/mL) alone increased the level of c-fos mRNA (1 h). However, tumor necro-sis factor-$\alpha$ (TNF-$\alpha$; 10 ng/mL) or interleukin-4 (IL-1$\beta$: 5 ng/mL) alone showed no significant induction of the level of c-fos mRNA. TNF-$\alpha$ showed a potentiating effect in the regulation of LPS-induced c-fos mRNA expression, whereas LPS showed an inhibitory action against IFN-Y-induced c-fos mRNA expression. LPS, but not TNF-$\alpha$, IL-1$\beta$ and IFN-$\gamma$, increased the level of c-jun mRNA (1 h). TNF-$\alpha$ and IFN-$\gamma$ showed an inhibitory action against LPS-induced c-jun mRNA expression. Both phorbol 12-myristate 13-acetate (PMA; 2.5 mM) and forskolin (FSK, 5 mM) increased the c-fos and c-jun mRNA expressions. In addition, the level of c-fos mRNA was expressed in an antagonistic manner when LPS was combined with PMA. When LPS was co-treated with either PMA or FSK, it showed an additive interaction for the induction of c-jun mRNA expression. Our results suggest that LPS and cytokines may be actively involved in the regulation of c-fos and c-jun mRNA expressions in primary cultured astrocytes. Moreover, both the PKA and PKC pathways may regulate the LPS-induced c-fos and c-jun mRNA expressions in different ways.

Activation of $PPAR{\alpha}$ Attenuates $IFNP{\gamma}$ and IL-$1{\beta}$-induced Cell Proliferation in Astrocytes: Involvement of IL-6 Independent Pathway

  • Lee, Jin-Koo;Seo, Eun-Min;Lee, Sang-Soo;Park, Soo-Hyun;Sim, Yun-Beom;Jung, Jun-Suh;Kim, Seon-Mi;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.3
    • /
    • pp.185-189
    • /
    • 2010
  • The present study demonstrates the effect of fibrates, agonists of $PPAR{\alpha}$ on cytokines-induced proliferation in primary cultured astrocytes. Alone or combination treatment with cytokines, such as IL-$1{\beta}$ (10 ng/ml), $IFNP{\gamma}$ (10 ng/ml), and TNF-$\alpha$ (10 ng/ml) cause a significant increase of cell proliferation in a time-dependent manner. Treatment of astrocytes with bezafibrate and fenofibrate (0, 5, and $10\;{\mu}M$) reduced the $IFNP{\gamma}$ and IL-$1{\beta}$-induced cell proliferation in a dose-dependent manner. To address the involvement of IL-6 on the $IFNP{\gamma}$ and IL-$1{\beta}$-induced cell proliferation, released IL-6 level was measured. $IFNP{\gamma}$ and IL-$1{\beta}$ cause an increase of released IL-6 protein level in a time-dependent manner. Furthermore, pretreatment with IL-6 antibody (0, 0.1, 1, 2.5, and 5 ng/ml) dose-dependently inhibited the $IFNP{\gamma}$ and IL-$1{\beta}$-induced cell proliferation. However, bezafibrate and fenofibrate did not affect increased mRNA and protein levels of IL-6 in $IFNP{\gamma}$ and IL-$1{\beta}$-stimulated astrocytes. Taken together, these results clearly suggest that activation of $PPAR{\alpha}$ attenuates the $IFNP{\gamma}$ and IL-$1{\beta}$-induced cell proliferation through IL-6 independent pathway.

Lactosylceramide Mediates the Expression of Adhesion Molecules in TNF-${\alpha}$ and IFN ${\gamma}$-stimulated Primary Cultured Astrocytes

  • Lee, Jin-Koo;Kim, Jin-Kyu;Park, Soo-Hyun;Sim, Yun-Beom;Jung, Jun-Sub;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.5
    • /
    • pp.251-258
    • /
    • 2011
  • Here we have investigated how lactosylceramide (LacCer) modulates gene expression of adhesion molecules in TNF-${\alpha}$ and IFN ${\gamma}$ (CM)-stimulated astrocytes. We have observed that stimulation of astrocytes with CM increased the gene expression of ICAM-1 and VCAM-1. D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and N-butyldeoxynojirimycin (NBDNJ), inhibitors of glucosylceramide synthase (GLS) and LacCer synthase (galactosyltransferase, GalT-2), inhibited the gene expression of ICAM-1 and VCAM-1 and activation of their gene promoter induced by CM, which were reversed by exogenously supplied LacCer. Silencing of GalT-2 gene using its antisense oligonucleotides also attenuated CM-induced ICAM-1 and VCAM-1 expression, which were reversed by LacCer. PDMP treatment and silencing of GalT-2 gene significantly reduced CM-induced luciferase activities in NF-${\kappa}B$, AP-1, GAS, and STAT-3 luciferase vectors-transfected cells. In addition, LacCer reversed the inhibition of NF-${\kappa}B$ and STAT-1 luciferase activities by PDMP. Taken together, our results suggest that LacCer may play a crucial role in the expression of ICAM-1 and VCAM-1 via modulating transcription factors, such as NF-${\kappa}B$, AP-1, STAT-1, and STAT-3 in CM-stimulated astrocytes.

Chronic Exposure of Nicotine Modulates the Expressions of the Cerebellar Glial Glutamate Transporters in Rats

  • Lim, Dong-Koo;Kim, Han-Soo
    • Archives of Pharmacal Research
    • /
    • v.26 no.4
    • /
    • pp.321-329
    • /
    • 2003
  • Rats were given nicotine (25 ppm) in their drinking water at the start of their mating period in order to study the expressions of glutamate transporter subtypes in cerebellar astrocytes following the chronic exposure of nicotine after mating. After the offspring were delivered, each group was divided into two subgroups. One group, the control group, was given distilled water only and the other group, the experimental group, was given distilled water containing nicotine. The cerebellar astrocytes were prepared from 7 day-old pups at each group. Ten days after the cells were cultured, the expression of the glutamate transporter subtypes (GLAST and GLT-1) was determined using immunochemistry and immunoblotting. During the continuous treatments, the developmental expression patterns of the GLAST and GLT-1 in the cerebellum were also determined from 2, 4 and 8 week-old rats. The expression levels of GLAST in cultured astrocytes of both the pre- or post-natally exposed groups were higher than those of the control group. However, these expression levels of the continuously exposed group were lower than those of the control group. Compared to those of the control group, the GLT-1 expression levels of all the nicotine-treated groups were higher, particularly in the continuously treated group.. According to the results from the immochemistry procedure, the cerebellar GLAST and GLT-1 expression levels of all nicotine-treated groups were lower than those of the control group at each age. However, the immunoblotting procedure showed that the cerebellar GLT-1 expression levels of all the nicotine-treated groups were higher than those of the control group, except for the rats that were continuously exposed for 8 weeks using immunoblotting. These results suggest that the expression of the glial GLAST and GLT-1 are altered differently depending on the initial exposure time and the partcicular period of nicotine exposure. In addition, nicotine exposure during gestation has persistent effects on glial cells.

Phospholipids from Bombycis corpus and Their Neurotrophic Effects

  • Kwon, Hak-Cheol;Jung, I-Yeon;Cho, Se-Yeon;Cho, Ock-Ryun;Yang, Min-Cheol;Lee, Sung-Ok;Hur, Jin-Young;Kim, Sun-Yeou;Yang, Jong-Beom;Lee, Kang-Ro
    • Archives of Pharmacal Research
    • /
    • v.26 no.6
    • /
    • pp.471-477
    • /
    • 2003
  • Three phospholipids (4-6) and three aromatic amines (1-3) were obtained from the methanol extract of Bombycis corpus. Based on spectral data, their structures have been elucidated as nicotiamide (1), cytidine (2), adenine (3), 1-Ο-(9Z-octadecenoyl)-2-Ο-(8Z,11Z-octadecadienoyl)-sn-glycero-3-phosphorylcholine (4), 1,2-di-Ο-hexadecanoyl-sn-glycero-3-phosphorylcholine (5) and 1,2-di-Ο-9Z-octadecenoyl-sn-glycero-3-phosphorylcholine (6). We examined the effects of compounds on synthesis of NGF in cultured astrocytes. By RT-PCR analysis, expresison of NGF mRNA in astrocytes cultured in serum-starvation increased after the addition of phospholipid (10 $\mu$M). The NGF content in the culture medium was significantly increased by compound 5, compared with the control value. These results suggest that three phospholipid compounds isolated from the methanol extract of Bombycis corpus may exert neurotrophic effects by stimulation of NGF synthesis in astrocytes.

Valproic Acid Regulates α-Synuclein Expression through JNK Pathway in Rat Primary Astrocytes

  • Kim, Jung Nam;Kim, Min Kyeong;Cho, Kyu Suk;Choi, Chang Soon;Park, Seung Hwa;Yang, Sung-Il;Joo, So Hyun;Park, Jin Hee;Bahn, Geonho;Shin, Chan Young;Lee, He-Jin;Han, Seol-Heui;Kwon, Kyoung Ja
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.222-228
    • /
    • 2013
  • Although the role of ${\alpha}$-synuclein aggregation on Parkinson's disease is relatively well known, the physiological role and the regulatory mechanism governing the expression of ${\alpha}$-synuclein are unclear yet. We recently reported that ${\alpha}$-synuclein is expressed and secreted from cultured astrocytes. In this study, we investigated the effect of valproic acid (VPA), which has been suggested to provide neuroprotection by increasing ${\alpha}$-synuclein in neuron, on ${\alpha}$-synuclein expression in rat primary astrocytes. VPA concentration-dependently increased the protein expression level of ${\alpha}$-synuclein in cultured rat primary astrocytes with concomitant increase in mRNA expression level. Likewise, the level of secreted ${\alpha}$-synuclein was also increased by VPA. VPA increased the phosphorylation of Erk1/2 and JNK and pretreatment of a JNK inhibitor SP600125 prevented the VPA-induced increase in ${\alpha}$-synuclein. Whether the increased ${\alpha}$-synuclein in astrocytes is involved in the reported neuroprotective effects of VPA awaits further investigation.

Effects of Peppermint Oil on Apoptosis of Astrocytes (신경교(神經膠) 성상세포(星狀細胞)의 세포자감사(細胞自減死)에 있어서 박하오일의 효과(效果))

  • Lee Sung-Ryull;Kim Tae-Hun
    • Journal of Oriental Neuropsychiatry
    • /
    • v.10 no.2
    • /
    • pp.47-57
    • /
    • 1999
  • Recently, essential oils are used for aromatherapy. Most essential oils are said to be anti-bacterial; some may be anti-viral or anti-fungal. I investigated the effects of peppermint pure essential oil on the heat shock-induced apoptosis in human astrocyte cell line CCF-STTGI. In previous studies, heat shock has been reported to induce the apoptosis or programmed cell death through the activation of caspase-3. We studied the heat shock-induced apoptosis through flow cytometry, DNA electrophoresis, and giemsa staining. Interestingly, these events were inhibited by pretreatment of peppermint pure essential oils in CCF-STTGl cells. Peppermint oil also inhibited the heat shock-induced apoptosis in primary cultured rat astrocytes. In addition, this Peppermint essential oil inhibited the heat shock-induced activation of caspase-3. These results suggest that peppermint pure essential oils may modulate the apoptosis through the activation of the interleukin-I -converting enzyme-like protease.

  • PDF

Isolation of a Hypoxia/Reoxygenation Regulatory Factor in Rat Astrocytes (흰쥐 성상세포에서 산소농도의존성 유전자의 분리)

  • Park Jeong-Ae;Song Hyun-Seok;Lee Hye-Shin;Kim Kyu-Won
    • YAKHAK HOEJI
    • /
    • v.50 no.2
    • /
    • pp.124-128
    • /
    • 2006
  • Astrocyte has emerged as an active regulator of brain function, which connects between blood vessels and neurons as well as is a structural component of the blood-brain barrier, From its structural characteristics, astrocyte seems to sensitively respond to oxygen tension, and, in turn, generate diverse cellular cascades. Therefore, to reveal astrocytlc events by oxygen change, we screened genes whose expressions are upregulated under reoxygenation after hypoxic stress using cDNA representational difference analysis (RDA) technique. Meteorin that regulates glial differentiation was isolated from primary cultured rat astrocytes as a hypoxia/reoxygenation regulatory factor. We cloned rat version of Meteorin (rMe-teorin) and determined full-size sequences of rMeteorin. In addition, RT-PCR analysis revealed that Meteorin was increased under reoxygenation in astrocytes and highly expressed in the developing brain. Collectively, these results suggest that Meteorin may regulate astrocyte-mediated effects in response to the change of oxygen tension in the pathophysiological states.