• Title/Summary/Keyword: Cu-resistant bacterium

Search Result 8, Processing Time 0.022 seconds

Characterization of Growth Inhibition and Isolation of a Copper-Resistant Rhizobacterium, Alcaligenes sp. KC-1 (Cu 내성 근권 세균 Alcaligenes sp. KC-1의 분리 및 생장특성)

  • Hong, Sun-Hwa;Shin, Ki-Chul;Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.182-187
    • /
    • 2011
  • In this study, A bacterium with an ability to resist toxic heavy metals was isolated from reeds in wetland. The isolated strain was identified to Alcaligenes sp. KC-1 by 16S rDNA sequencing. Heavy metals such as Pb, $Cr^{6+}$, Cd, Zn and Cu were supplied to media. The ecotoxic treat of the heavy metals on the growth of strain KC-1 was performed when the isolated strain Alcaligenes sp. KC-1 cultured with Cu ranging from 0 mM to 20 mM. It showed the resistance of $EC_{50}$(7.34 mM) and cell growth ($OD_{600\;nm}$ : 0.83 after 42 hours) when it was cultured in Cu.

Antibacterial Function of Fabrics Dyed with Extract from Chamaecyparis obtusa Leaves against Methicillin-resistant Staphylococcus aureus (편백나무 잎 추출액을 이용한 천연염색포의 항생제 내성균주에 대한 항균성)

  • Choi, Na Young;Kim, Ji-Hee
    • Fashion & Textile Research Journal
    • /
    • v.19 no.3
    • /
    • pp.331-336
    • /
    • 2017
  • Bacteria exist everywhere and continuously come into contact with daily surroundings and humans. Super bacterium methicillin-resistant Staphylococcus aureus, resistant to methicillin, has recently appeared. The morbidity and rate of death associated with super bacteria infection has increased. This study investigated the antibacterial activity of fabrics naturally dyed with Chamaecyparis obtusa leaves extract against methicillin-resistant Staphylococcus aureus. Fabrics were left for 15 min in a natural dyeing solution prepared by extraction from C. obtusa leaves using 11.3% (o.w.f) with a fixed liquor ratio of 1:22 at $40^{\circ}C$. The dyeing process was conducted using three different mordants; subsequently, the K/S value of the dyed fabrics increased in the order of None < Cu < Fe < Al. The color fastness property of the fabrics to washing, dry-cleaning, and rubbing was found to be excellent and ranked in the 4-5 grade. The color fastness to light of natural dyeing is low in most cases and has the problem that the dye color soon becomes bleached. Yet, in most cases cloth dyed with retinispora leaves, the color fastnezz to light was good with a third to fourth grade. Non-mordant fabrics, aluminum mordants, and copper mordants also showed better antibacterial properties (99.9% reduction) against methicillin-resistant Staphylococcus aureus, compared to the control fabrics. The dyed fabrics showed the same antibacterial activity even after three washes. The results highlight the strong potential of fabrics naturally dyed with C. obtusa-extract as a medicinal material with excellent antibacterial function against methicillin-resistant Staphylococcus aureus.

Isolation and Degradation Activity of a TBTCl (Tributyltin Chloride) Resistant Bacteriain Gwangyang Bay (광양만에서 TBTCl (Tributyltin Chloride) 내성세균의 분리 및 분해활성)

  • Jeong, Seong-Yun;Son, Hong-Joo;Jeoung, Nam-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.424-431
    • /
    • 2011
  • BACKGROUND: Tributyltin chloride is among the most toxic compounds known for aquatic ecosystems. Microorganisms are responsible for removal of TBTCl. Nevertheless, only a limited number of marine bacteria were investigated for biodegradation of TBTCl in Korea. METHODS AND RESULTS: The number of TBTCl resistant bacteria ranged from $2.5{\times}10^3$ to $3.8{\times}10^3$ cfu/mL in the seawater, and ranged from $3.2{\times}10^5$ to $9.1{\times}10^5$ cfu/g in the surface sediment, respectively. The morphological, physiological, and biochemical characteristics of TBTCl resistant bacteria were investigated by API 20NE and other tests. The most abundant species of TBTCl resistant bacteria were Vibrio spp. (19.2%), Bacillus spp. (16.2%), Aeromonas spp. (15.2%), and Pseudomonas spp. (13.1%), etc. Eleven TBTCl resistant isolates also had a resistance to heavy metals (Cd, Cu, Hg, and Zn). Among them, isolate T7 showing the strong TBTCl-resistance was selected. This isolate was identified as the genus Pantoea by 16S rRNA gene sequencing and designated as Pantoea sp. T7. In addition, this bacterium was cultivated up to the growth of 50.7% after 60 hrs at TBTCl concentration of $500{\mu}M$. TBTCl-degrading activity of Pantoea sp. T7 was measured by GC-FPD analysis. As a result of biological TBTCl-degradation at TBTCl concentration of $100{\mu}M$, TBTCl-removal efficiency of Pantoeasp. T7 was 62.7% after 40 hrs. CONCLUSION(S): These results suggest that Pantoea sp. T7 is potentially useful for the bioremediation of TBT contamination.

Isoforms of Glucose 6-Phosphate Dehydrogenase in Deinococcus radiophilus

  • Sung, Ji-Youn;Lee, Young-Nam
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.318-325
    • /
    • 2007
  • Glucose 6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) in Deinococcus radiophilus, an extraordinarily UV-resistant bacterium, was investigated to gain insight into its resistance as it was shown to be involved in a scavenging system of superoxide $(O_2^{-1})$ and peroxide $(O_2^{-2})$ generated by UV and oxidative stresses. D. radiophilus possesses two G6PDH isoforms: G6PDH-1 and G6PDH-2, both showing dual coenzyme specificity for NAD and NADP. Both enzymes were detected throughout the growth phase; however, the substantial increase in G6PDH-1 observed at stationary phase or as the results of external oxidative stress indicates that this enzyme is inducible under stressful environmental conditions. The G6PDH-1 and G6PDH-2 were purified 122- and 44-fold (using NADP as cofactor), respectively. The purified G6PDH-1 and G6PDH-2 had the specific activity of 2,890 and 1,033 U/mg protein (using NADP as cofactor) and 3,078 and 1,076 U/mg protein (using NAD as cofactor), respectively. The isoforms also evidenced distinct structures; G6PDH-1 was a tetramer of 35 kDa subunits, whereas G6PDH-2 was a dimer of 60kDa subunits. The pIs of G6PDH-1 and G6PDH-2 were 6.4 and 5.7, respectively. Both G6PDH-1 and G6PDH-2 were inhibited by both ATP and oleic acid, but G6PDH-1 was found to be more susceptible to oleic acid than G6PDH-2. The profound inhibition of both enzymes by ${\beta}-naphthoquinone-4-sulfonic$ acid suggests the involvement of lysine at their active sites. $Cu^{2+}$ was a potent inhibitor to G6PDH-2, but a lesser degree to G6PDH-1. Both G6PDH-1 and G6PDH-2 showed an optimum activity at pH 8.0 and $30^{\circ}C$.

Characteristics of Heavy Metal Resistant Plasmid in Enterobacter cloaceae K41 (Enterobacter cloaceae K41 plasmid의 중금속 저항성)

  • Kim Young-Hee;Lee Sang-Jun;Jeong Yong-Kee;Chung Kyung-Tae
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.566-571
    • /
    • 2005
  • A natural habitat bacterium, Enterobacter cloaceae K41 was isolated from fresh water plant root and identified. This strain was used to investigate heavy metal resistance. The optimal growth conditions of the bacterium were LB medium containing$1\%$ yeast extract, $1\%$ lactose, $1\%$ NaCl, pH 7.0, at $37^{\circ}C$, and for 24 hours on a shaker. The minimal inhibitory concentration (MIC) of heavy metals against E. cloaceae KCTC2519 and E. cloaceae K41 was compared. The MIC of E. cloaceae K41 was 150 ppm in Cu, 50 ppm in Cd whereas that of the standard strain was 50 ppm in Cu but no growth was observed either Cd or two mixed heavy metal solution. The presence of plasmid was cleared from the isolated strain whereas no possession from the standard strain. The plasmid from E. cloaceae K41 was transformed into E. coli $DH5{\alpha}$. The MIC of transformed strain increased resistance 7 times in Cu and 6 times in Cd by insertion of this plasmid. The metal adsorption of the transformant was increased 1.3 times in Cu and 1.5 times in Cd indicating the plasmid was responsible for heavy metal resistance.

Characterization of a Heavy Metal-Resistant and Plant Growth-Promoting Rhizobacterium, Methylobacterium sp. SY-NiR1 (중금속 내성 및 식물 생장 향상 근권세균 Methylobacterium sp. SY-NiR1의 분리 및 특성)

  • Koo, So-Yeon;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.58-65
    • /
    • 2007
  • The role of soil microorganisms, specifically rhizobacteria, in the development of rhizoremediation techniques is important to speed up the process and to increase the rate of mobilization or absorption of heavy metals to the plant. In this study, Methylobacterium sp. SY-NiR1 was isolated from the rhizosphere soils of plants in oil and heavy metal-contaminated soil. Based on its pink pigmented colony, rod-shape cells, and belonging in $\alpha-Proteobacteria$, Methylobacterium sp. SY-NiR1 is considered a pink-pigmented facultative methylotroph. SY-NiR1 had the ability to produce indole acetic acid which is one of phytohormones. This bacterium showed resistance against multiple heavy metals such as Cd, Cr, Cu, Pb, Ni, Zn, and the order of its resistance based on $EC_{50}$ was Zn > Ni > Cu > Pb > Cd > Cr. Therefore, Methylobacterium sp. SY-NiR1 can stimulate seed germination and plant growth in soil contaminated with heavy metals.

Isolation and Degradation Characteristics of 2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether Degrading Bacterium (2,4,4l-Trichloro-2l-Hydroxydiphenyl Ether 분해균의 분리 및 분해특성)

  • Han, Nan-Sook;Son, Hong-Joo;Lee, Geon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.6 no.2
    • /
    • pp.173-182
    • /
    • 1997
  • The bacterial strains, which utilizes 2,4,4'-trichloro-2'-hydroxydiphenyl ether(TCHDPE) as a sole carbon source, were isolated by selective enrichment culture from soil samples of industrial waste deposits. The bacterium that showed the highestt biodegradation activity was designated as EL-O47R The isolated strain EL-O47R was Identified as the genus Pseudomonas from the results of morphological, cultural, and biochemical tests. The optimum conditions of medium for the growth and the degradation of TCHDPE were TCHDPE 500 ppm, (NH4)2SO4 0.1% as the nitrogen source, initial pH 7.0±0.1, and 37℃, respectively. In this conditions, the regradation rate of TCHDPE was about 97%. Pseudomonas sp. EL-O47R was tested for resistance to several metal compounds and antibiotics. Pseudomonas sp. EL-O47R was moderately grown to Cd(NO3)2, ZnCl2, AgSO4, CuSO4 and HgCl2. This strain was sensitive to rifampicin and kanamycln but resistant to ampicillin, penicillin, tetracyclin and chloramphenlcol. Pseudomonas sp. EL-O47R was grown structurally related com- pounds and potential metabolites of TCHDPE, and has the stability on TCHDPE biodegradation.

  • PDF

Identification and Characterization of External Copper Responsive Genes of Deinococcus radiodurans (DNA Microarry를 이용한 Deinococcus radiodurans의 구리이온 특이 반응 유전자 탐색 및 특성 분석)

  • Joe, Min-Ho;Lim, Sang-Yong;Jung, Sun-Wook;Song, Du-Sub;Choi, Young-Ji;Kim, Dong-Ho
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.169-177
    • /
    • 2008
  • Global gene expression of Deinococcus radiodurans, a highly radiation resistant bacterium, in response to excess copper was analyzed by using oligonucleotide microarray chip. Among 3,187 open reading frames of D. radiodurans, seventy genes showed a statistically significant expression ratio of at least 2-fold changes under growth conditions of excess copper; 64 genes were induced and 6 genes were reduced. Especially, two operons ($DRB0014{\sim}DRB0017$ and $DRB0125{\sim}DRB0121$) presumably involved in the iron transport and utilization were the most highly induced genes by excess copper. A quantitative real-time PCR assay revealed that DRB00l4 and DRB0125 are highly transcribed responding to excess copper and 2,2'-dipyridyl, an iron chelator. In addition, the transcription of both genes was not changed by excess iron and bathocuproine disulphonate, a copper chelator. These results suggested that the copper metabolism may be closely connected with the iron transport and utilization in D. radiodurans. However, the disruption of each gene, DRB00l4 and DRB0125, did not affect the copper and radiation resistance, the most well-known character of this organism.