Characterization of Growth Inhibition and Isolation of a Copper-Resistant Rhizobacterium, Alcaligenes sp. KC-1

Cu 내성 근권 세균 Alcaligenes sp. KC-1의 분리 및 생장특성

  • Hong, Sun-Hwa (Department of Environmental and Energy Engineering, University of Suwon) ;
  • Shin, Ki-Chul (Department of Environmental and Energy Engineering, University of Suwon) ;
  • Lee, Eun-Young (Department of Environmental and Energy Engineering, University of Suwon)
  • 홍선화 (수원대학교 환경에너지공학과) ;
  • 신기철 (수원대학교 환경에너지공학과) ;
  • 이은영 (수원대학교 환경에너지공학과)
  • Received : 2011.05.23
  • Accepted : 2011.06.12
  • Published : 2011.06.28

Abstract

In this study, A bacterium with an ability to resist toxic heavy metals was isolated from reeds in wetland. The isolated strain was identified to Alcaligenes sp. KC-1 by 16S rDNA sequencing. Heavy metals such as Pb, $Cr^{6+}$, Cd, Zn and Cu were supplied to media. The ecotoxic treat of the heavy metals on the growth of strain KC-1 was performed when the isolated strain Alcaligenes sp. KC-1 cultured with Cu ranging from 0 mM to 20 mM. It showed the resistance of $EC_{50}$(7.34 mM) and cell growth ($OD_{600\;nm}$ : 0.83 after 42 hours) when it was cultured in Cu.

습지의 갈대토양으로부터 중금속에 내성이 있는 세균이 분리되었다. 분리된 균주는 16S rDNA 염기서열분석에 의거하여 Alcaligenes sp.로 동정되었다. 납, 크롬, 카드뮴, 아연 및 구리와 같은 중금속을 배지에 첨가하였다. 분리균주 Alcaligenes sp. KC-1을 구리가 0 mM에서 20 mM의 농도로 첨가된 배지에서 배양하였을 때 균주의 생장에 미치는 독성을 알아보았다. 분리균주는 구리가 존재할 때 42시간 배양된 후 7.34 mM의 $EC_{50}$값과 $OD_{600\;nm}$에서 0.83의 흡광도 값을 보여주는 구리 내성균주였다.

Keywords

References

  1. Brinkmann, G. and R. Kuhn. 1977. Limiting values for damaging action of water pollutants to bacteria Pseudomonas putida and green algae Scenedesmus guadricauda in cell multiplication inhibition test. Z.Wasser Abwasses-Forschung 10: 87-98..
  2. Carbonell, G., M. V. Pablos, P. Garcia, C. Ramos, P. SanchezP, C. Fernandez, and J. V. Tarazona. 2000. Rapid and cost-effective multiparameter toxicity tests for soil microorganisms. Sci. Total Environ. 20: 143-150.
  3. K. S. Cho, S. Y. Koo, J. Y. Kim, and H. W. Ryu. 2004. Quantification of inhibitory impact of heavy metals on the growth of Escherichia coli. Kor. J. Microbiol. Biotechnol. 32: 341-346.
  4. Duttka, J. and K. Kwan. 1981. Comparison of three microbial toxicity screening tests with the microtox test. Bull.Environm. Contam. Toxicol. 27: 753-757.
  5. Gellert, G., A. Stommel, and A. Trujillano. 1999. Development of an optimal bacterial medium based on the growth inhibition assay with Vibrio fischeri. Chemosphere 39: 467- 476. https://doi.org/10.1016/S0045-6535(99)00002-8
  6. Haigh, S. D. and A. F. K. Rennie. 1994. Rapid methods to assess the e!ects of chemicals on microbial activity in soil. Environ. Toxicol. Water Qual. 9: 347-354. https://doi.org/10.1002/tox.2530090415
  7. S. H. Hong, H. Ryu, J. Kim, K. S. Cho. 2010b. Rhizoremediation of diesel-contaminated soil using the plant growthpromoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation. 22: 593-601.
  8. S. H. Hong, K. C. Shin, and E. Y. Lee. 2010a. Characterization of a nitrogen fixing bacteria Mycobacterium hominis sp. AKC-10 isolated from the wetland. Kor. J. Microbiol. Biotechnol. 38: 302-307.
  9. Idris, R., R. Trifonova, M. Puschenreiter, W. W. Wenzel, and A. Sessitsch. 2004. Bacerial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microboil. 70: 2667-2677. https://doi.org/10.1128/AEM.70.5.2667-2677.2004
  10. Jin, S., J. I. Drever, and P. J. Colberg. 2007. Effects of copper on sulfate reduction in bacterial consortia enriched from metal-contaminated and uncontaminated 토적물 s. Environ. Toxicol. Chem. 26: 225-230. https://doi.org/10.1897/06-190R.1
  11. Kapanen, A. and M. ItaKvaara. 2001. Ecotoxicity Tests for Compost Applications. Ecotoxicol. Environ. Saf. 49: 1-16. https://doi.org/10.1006/eesa.2000.1927
  12. Koo, S. Y. and K. S. Cho. 2009. Isolation and characterization of a plant growth promoting rhizobacterium, Serratia sp. SY5. J. Microbiol. Biotechnol. 19: 1431-1438.
  13. Koo, S. Y. and K. S. Cho. 2007. Characterization of a heavy metal-resistant and plant growth-promoting rhizobacterium, Methylobacterium sp. SY-NiR1. Kor. J. Microbiol. Biotechnol. 35: 58-65.
  14. Lane, T. W. and F. M. Morel. 2000. A biological function for cadmium in marine diatoms. Proc. Natl. Acad. Sci. USA. 97: 4627-4631. https://doi.org/10.1073/pnas.090091397
  15. Li, X. Y., X. Xu, K. Wu, J. Liu, and S. Chen. 2008. Toxic heavy metal waste exposure and abnormal birth outcomes in an electronic waste recycling town of China. Toxicol Lett. 180:185.
  16. Margesin, R., D. Labbe, F. Schinner, C. W. Greer, and L. G.Whyte. 2003. Characterization of hydrocarbon-degradingmicrobial populations in contaminated and pristine Alpine soils. Appl. Environ. Microbiol. 69: 3085-3092. https://doi.org/10.1128/AEM.69.6.3085-3092.2003
  17. Nassar, N., P. Abeywardana, A. Barker, and C. Bower. 2009. Parental occupational exposure to potential endocrine disrupting chemicals and risk of hypospadias in infants. Occup Environ Med. 67: 585-589.
  18. Paran, J. H., S. Sharma, and A. A. Quershi. 1990. A rapid and simple toxicity assay based on growth rate inhibition of Pseudomonas fluorescens. Toxic. Assess. 5: 351-365. https://doi.org/10.1002/tox.2540050404
  19. Rajkumar, M., R. Nagendran, K. J. Lee, W. H. Lee, and S. Z. Kim. 2005. Influence of plant growth promoting bacteria and Cr6+on the growth of Indian mustard. Chemosphere 62: 741-748.
  20. Reinke, M., G. Kalnowski, and W. Dott. 1995. Evaluation of an automated, minituarized Pseudomonas putida growth inhibition assay. Vom Wasser 85: 199-213.
  21. Riis, V., W. Babel, and O. H. Pucci. 2002. Influence of heavy metals on the microbial degradation of diesel fuel. Chemosphere 49: 559-568. https://doi.org/10.1016/S0045-6535(02)00386-7
  22. Ronco, A. E., M. C. Sorbero, G. D. B. Rossini, P. R. Alzuet, and B. J. Dutka. 1995. Screening for 토적물 toxicity in the Rio Santiago basin: A baseline study. Environ. Toxicol. Water Qual. 10: 35-39. https://doi.org/10.1002/tox.2530100106
  23. Rong, P. R., L. Cao, and R. Zhang. 2009. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19. J. Hazard Mater. 171: 761-766. https://doi.org/10.1016/j.jhazmat.2009.06.080
  24. Sauvant, M. P., D. Pepin, J. Bohatier, and C. A. Groliere. 1995. Microplate technique for screening and assessing cytotoxicity of xenobiotics with Tetrahymena pyriformis. Ecotoxicol. Environ. Saf. 32: 159-165. https://doi.org/10.1006/eesa.1995.1097
  25. Schmitt, M., G. Gellert, J. Ludwig, and H. Lichtenberg- Frate. 2004. Phenotypic yeast growth analysis for chronic toxicity testing. Ecotoxicol. Environ. Saf. 59: 142-150. https://doi.org/10.1016/j.ecoenv.2004.06.002
  26. Schmitz, R., A. Eisentrager, and W. Dott. 1998. Miniaturized kinetic growth inhibition assays with Vibrio fischeri and Pseudomonas putida. J. Microbiol. Methods 31: 159-166. https://doi.org/10.1016/S0167-7012(97)00098-5
  27. Solioz, M. and J. V. Stoyanov. 2003. Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev. 27: 183-195. https://doi.org/10.1016/S0168-6445(03)00053-6
  28. Sun, L., L. He, Y. Zhang, W. Zhang, Q. Wang, X. Sheng. 2009. Isolation and biodiversity of copper-resistant bacteria from rhizosphere soil of Elsholtzia splendens. Wei Sheng Wu Xue Bao. 49: 1360-1366.
  29. Teitzel, G. M., A. Geddie, D. S. K. Long, M. J. Kirisits, M. Whiteley, and M. R. Parsek. 2006. Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol. 188: 7242-7256. https://doi.org/10.1128/JB.00837-06
  30. Utgikar, V. P., B. Y. Chen, N. Chaudhary, H. H. Tabak, J. R. Haines, and R. Govind. 2001. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50. Environ. Toxicol. Chem. 20: 2662-2669 https://doi.org/10.1002/etc.5620201202
  31. Xiao, J., L. Guo, S. Wang, and Y. Lu. 2010. Comparative impact of cadmium on two phenanthrene-degrading bacteria isolated from cadmium and phenanthrene co-contaminated soil in China. J Hazard Mater. 15: 1741-1743.
  32. Zhaohui, X., Y. Lei, and J. Patel. 2010. Bioremediation of soluble heavy metals with recombinant Caulobacter crescentu. Bioeng. Bugs. 1: 207-212.50. https://doi.org/10.4161/bbug.1.3.11246