Browse > Article

Characterization of Growth Inhibition and Isolation of a Copper-Resistant Rhizobacterium, Alcaligenes sp. KC-1  

Hong, Sun-Hwa (Department of Environmental and Energy Engineering, University of Suwon)
Shin, Ki-Chul (Department of Environmental and Energy Engineering, University of Suwon)
Lee, Eun-Young (Department of Environmental and Energy Engineering, University of Suwon)
Publication Information
Microbiology and Biotechnology Letters / v.39, no.2, 2011 , pp. 182-187 More about this Journal
Abstract
In this study, A bacterium with an ability to resist toxic heavy metals was isolated from reeds in wetland. The isolated strain was identified to Alcaligenes sp. KC-1 by 16S rDNA sequencing. Heavy metals such as Pb, $Cr^{6+}$, Cd, Zn and Cu were supplied to media. The ecotoxic treat of the heavy metals on the growth of strain KC-1 was performed when the isolated strain Alcaligenes sp. KC-1 cultured with Cu ranging from 0 mM to 20 mM. It showed the resistance of $EC_{50}$(7.34 mM) and cell growth ($OD_{600\;nm}$ : 0.83 after 42 hours) when it was cultured in Cu.
Keywords
Alcaligenes sp.; $EC_{50}$; heavy metal; Cu-resistant bacterium;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Zhaohui, X., Y. Lei, and J. Patel. 2010. Bioremediation of soluble heavy metals with recombinant Caulobacter crescentu. Bioeng. Bugs. 1: 207-212.50.   DOI   ScienceOn
2 Reinke, M., G. Kalnowski, and W. Dott. 1995. Evaluation of an automated, minituarized Pseudomonas putida growth inhibition assay. Vom Wasser 85: 199-213.
3 Riis, V., W. Babel, and O. H. Pucci. 2002. Influence of heavy metals on the microbial degradation of diesel fuel. Chemosphere 49: 559-568.   DOI   ScienceOn
4 Ronco, A. E., M. C. Sorbero, G. D. B. Rossini, P. R. Alzuet, and B. J. Dutka. 1995. Screening for 토적물 toxicity in the Rio Santiago basin: A baseline study. Environ. Toxicol. Water Qual. 10: 35-39.   DOI   ScienceOn
5 Rong, P. R., L. Cao, and R. Zhang. 2009. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19. J. Hazard Mater. 171: 761-766.   DOI   ScienceOn
6 Sauvant, M. P., D. Pepin, J. Bohatier, and C. A. Groliere. 1995. Microplate technique for screening and assessing cytotoxicity of xenobiotics with Tetrahymena pyriformis. Ecotoxicol. Environ. Saf. 32: 159-165.   DOI   ScienceOn
7 Schmitt, M., G. Gellert, J. Ludwig, and H. Lichtenberg- Frate. 2004. Phenotypic yeast growth analysis for chronic toxicity testing. Ecotoxicol. Environ. Saf. 59: 142-150.   DOI   ScienceOn
8 Schmitz, R., A. Eisentrager, and W. Dott. 1998. Miniaturized kinetic growth inhibition assays with Vibrio fischeri and Pseudomonas putida. J. Microbiol. Methods 31: 159-166.   DOI   ScienceOn
9 Solioz, M. and J. V. Stoyanov. 2003. Copper homeostasis in Enterococcus hirae. FEMS Microbiol Rev. 27: 183-195.   DOI   ScienceOn
10 Sun, L., L. He, Y. Zhang, W. Zhang, Q. Wang, X. Sheng. 2009. Isolation and biodiversity of copper-resistant bacteria from rhizosphere soil of Elsholtzia splendens. Wei Sheng Wu Xue Bao. 49: 1360-1366.
11 Teitzel, G. M., A. Geddie, D. S. K. Long, M. J. Kirisits, M. Whiteley, and M. R. Parsek. 2006. Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa. J Bacteriol. 188: 7242-7256.   DOI   ScienceOn
12 Utgikar, V. P., B. Y. Chen, N. Chaudhary, H. H. Tabak, J. R. Haines, and R. Govind. 2001. Acute toxicity of heavy metals to acetate-utilizing mixed cultures of sulfate-reducing bacteria: EC100 and EC50. Environ. Toxicol. Chem. 20: 2662-2669   DOI   ScienceOn
13 Xiao, J., L. Guo, S. Wang, and Y. Lu. 2010. Comparative impact of cadmium on two phenanthrene-degrading bacteria isolated from cadmium and phenanthrene co-contaminated soil in China. J Hazard Mater. 15: 1741-1743.
14 S. H. Hong, K. C. Shin, and E. Y. Lee. 2010a. Characterization of a nitrogen fixing bacteria Mycobacterium hominis sp. AKC-10 isolated from the wetland. Kor. J. Microbiol. Biotechnol. 38: 302-307.
15 Idris, R., R. Trifonova, M. Puschenreiter, W. W. Wenzel, and A. Sessitsch. 2004. Bacerial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microboil. 70: 2667-2677.   DOI   ScienceOn
16 Koo, S. Y. and K. S. Cho. 2007. Characterization of a heavy metal-resistant and plant growth-promoting rhizobacterium, Methylobacterium sp. SY-NiR1. Kor. J. Microbiol. Biotechnol. 35: 58-65.
17 Jin, S., J. I. Drever, and P. J. Colberg. 2007. Effects of copper on sulfate reduction in bacterial consortia enriched from metal-contaminated and uncontaminated 토적물 s. Environ. Toxicol. Chem. 26: 225-230.   DOI   ScienceOn
18 Kapanen, A. and M. ItaKvaara. 2001. Ecotoxicity Tests for Compost Applications. Ecotoxicol. Environ. Saf. 49: 1-16.   DOI   ScienceOn
19 Koo, S. Y. and K. S. Cho. 2009. Isolation and characterization of a plant growth promoting rhizobacterium, Serratia sp. SY5. J. Microbiol. Biotechnol. 19: 1431-1438.
20 Lane, T. W. and F. M. Morel. 2000. A biological function for cadmium in marine diatoms. Proc. Natl. Acad. Sci. USA. 97: 4627-4631.   DOI   ScienceOn
21 Li, X. Y., X. Xu, K. Wu, J. Liu, and S. Chen. 2008. Toxic heavy metal waste exposure and abnormal birth outcomes in an electronic waste recycling town of China. Toxicol Lett. 180:185.
22 Margesin, R., D. Labbe, F. Schinner, C. W. Greer, and L. G.Whyte. 2003. Characterization of hydrocarbon-degradingmicrobial populations in contaminated and pristine Alpine soils. Appl. Environ. Microbiol. 69: 3085-3092.   DOI   ScienceOn
23 Nassar, N., P. Abeywardana, A. Barker, and C. Bower. 2009. Parental occupational exposure to potential endocrine disrupting chemicals and risk of hypospadias in infants. Occup Environ Med. 67: 585-589.
24 Paran, J. H., S. Sharma, and A. A. Quershi. 1990. A rapid and simple toxicity assay based on growth rate inhibition of Pseudomonas fluorescens. Toxic. Assess. 5: 351-365.   DOI
25 Rajkumar, M., R. Nagendran, K. J. Lee, W. H. Lee, and S. Z. Kim. 2005. Influence of plant growth promoting bacteria and Cr6+on the growth of Indian mustard. Chemosphere 62: 741-748.
26 Duttka, J. and K. Kwan. 1981. Comparison of three microbial toxicity screening tests with the microtox test. Bull.Environm. Contam. Toxicol. 27: 753-757.
27 Brinkmann, G. and R. Kuhn. 1977. Limiting values for damaging action of water pollutants to bacteria Pseudomonas putida and green algae Scenedesmus guadricauda in cell multiplication inhibition test. Z.Wasser Abwasses-Forschung 10: 87-98..
28 Carbonell, G., M. V. Pablos, P. Garcia, C. Ramos, P. SanchezP, C. Fernandez, and J. V. Tarazona. 2000. Rapid and cost-effective multiparameter toxicity tests for soil microorganisms. Sci. Total Environ. 20: 143-150.
29 K. S. Cho, S. Y. Koo, J. Y. Kim, and H. W. Ryu. 2004. Quantification of inhibitory impact of heavy metals on the growth of Escherichia coli. Kor. J. Microbiol. Biotechnol. 32: 341-346.
30 Gellert, G., A. Stommel, and A. Trujillano. 1999. Development of an optimal bacterial medium based on the growth inhibition assay with Vibrio fischeri. Chemosphere 39: 467- 476.   DOI   ScienceOn
31 Haigh, S. D. and A. F. K. Rennie. 1994. Rapid methods to assess the e!ects of chemicals on microbial activity in soil. Environ. Toxicol. Water Qual. 9: 347-354.   DOI   ScienceOn
32 S. H. Hong, H. Ryu, J. Kim, K. S. Cho. 2010b. Rhizoremediation of diesel-contaminated soil using the plant growthpromoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation. 22: 593-601.