• 제목/요약/키워드: Cu-based composite

검색결과 85건 처리시간 0.029초

가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu분말과의 복합화 및 SPS 거동 (II) - II. 복합분말의 SPS와 특성 - (Production of Fe Amorphous Powders by Gas-Atomization Process and Subsequent Spark Plasma Sintering of Fe amorphous-ductile Cu Composite Powder Produced by Ball-milling Process (II) - II. SPS Behaviors of Composite Powders and their Characteristics -)

  • 김진천;김지순;김휘준;김정곤
    • 한국분말재료학회지
    • /
    • 제16권5호
    • /
    • pp.326-335
    • /
    • 2009
  • Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The Fe-based amorphous powders and the Fe-Cu composite powders were compacted by a spark plasma sintering (SPS) process. Densification of the Fe amorphous-Cu composited powders by spark plasma sintering of was occurred through a plastic deformation of the each amorphous powder and Cu phase. The SPS samples milled by AGO-2 under 500 rpm had the best homogeneity of Cu phase and showed the smallest Cu pool size. Micro-Vickers hardness of the as-SPSed specimens was changed with the milling processes.

Performances of Metallic (sole, composite) and Non-Metallic Anodes to Harness Power in Sediment Microbial Fuel Cells

  • Haque, Niamul;Cho, Daechul;Kwon, Sunghyun
    • Environmental Engineering Research
    • /
    • 제19권4호
    • /
    • pp.363-367
    • /
    • 2014
  • One chambered sediment microbial fuel cell (SMFC) was equipped with Fe, brass (Cu/Zn), Fe/Zn, Cu, Cu/carbon cloth and graphite felt anode. Graphite felt was used as common cathode. The SMFC was membrane-less and mediator-less as well. Order of anodic performance on the basis of power density was Fe/Zn ($6.90Wm^{-2}$) > Fe ($6.03Wm^{-2}$) > Cu/carbon cloth ($2.13Wm^{-2}$) > Cu ($1.13Wm^{-2}$) > brass ($Cu/Zn=0.24Wm^{-2}$) > graphite felt ($0.10Wm^{-2}$). Fe/Zn composite anode have twisted 6.73% more power than Fe alone, Cu/carbon cloth boosted power production by 65%, and brass (Cu/Zn) produced 65% less power than Cu alone. Graphite felt have shown the lowest electricity generation because of its poor galvanic potential. The estuarine sediment served as supplier of oxidants or electron producing microbial flora, which evoked electrons via a complicated direct microbial electron transfer mechanism or making biofilm, respectively. Oxidation reduction was kept to be stationary over time except at the very initial period (mostly for sediment positioning) at anodes. Based on these findings, cost effective and efficient anodic material can be suggested for better SMFC configurations and stimulate towards practical value and application.

에어로졸 증착한 세라믹/금속 복합막의 금속 함량에 따른 습도 감지 특성 연구 (Study of Humidity Sensing Properties Related to Metal Content of Aerosol Deposited Ceramic/Metal Composite Films)

  • 김익수;구상모;박철환;신원호;이동원;오종민
    • 한국전기전자재료학회논문지
    • /
    • 제34권5호
    • /
    • pp.314-320
    • /
    • 2021
  • Controlling ambient humid condition through high performance humidity sensors has become important for various fields, including industrial process, food storage, and the preservation of historic remains. Although aerosol deposited humidity sensors using ceramic BaTiO3 (BT) material have been widely studied because of their longtime stability, there remain critical disadvantages, such as low sensitivity, low linearity, and slow response/recovery time in case of the sensors fabricated at room temperature. To achieve superior humidity sensing properties even at room temperature condition, BT-Cu composite films utilizing aerosol deposition (AD) process have been proposed based on the percolation theory. The BT-Cu composite films showed gradually improved sensing properties until the Cu concentration reached 15 wt% in the composite film. However, the excessive Cu (above 30 wt%) containing BT-Cu composite films showed a rapid decrease of the sensing properties. The results of observed surface morphology of the AD fabricated composite films, to figure out the metal filler effect, showed correlation between surface topography as well as size and the amount of open pores according to the metal filler content. Overall, it is very important not only dielectric constant of the humidity sensing films but also microstructures, because they affect either the variation range of capacitance by ambient humidity or adsorption/desorption of ambient humidity onto/from the humidity sensing films.

가스분무 Fe계 비정질 분말과 유체 내 전기선 폭발에 의한 나노 Cu 분말의 복합화와 방전플라즈마 소결 (Composite and Spark Plasma Sintering of the Atomized Fe Amorphous Powders and Wire-exploded Cu Nanopowder in Liquid)

  • 김진천;구왕회;유주식
    • 한국분말재료학회지
    • /
    • 제15권4호
    • /
    • pp.285-291
    • /
    • 2008
  • Fe based ($Fe_{68.2}C_{5.9}Si_{3.5}B_{6.7}P_{9.6}Cr_{2.1}Mo_{2.0}Al_{2.0}$) amorphous powder were produced by a gas atomization process, and then ductile Cu powder fabricated by the electric explosion of wire(EEW) were mixed in the liquid (methanol) consecutively. The Fe-based amorphous - nanometallic Cu composite powders were compacted by a spark plasma sintering (SPS) processes. The nano-sized Cu powders of ${\sim}\;nm$200 produced by EEW in the methanol were mixed and well coated with the atomized Fe amorphous powders through the simple drying process on the hot plate. The relative density of the compacts obtained by the SPS showed over 98% and its hardness was also found to reach over 1100 Hv.

Quantum annealing을 통한 hybrid composite의 두께 방향 열전도 특성 개선 (Improving Through-thickness Thermal Conductivity Characteristic of Hybrid Composite with Quantum Annealing)

  • 조성욱;전성식
    • Composites Research
    • /
    • 제37권3호
    • /
    • pp.170-178
    • /
    • 2024
  • 본 연구에서는 탄소섬유 강화 플라스틱(CFRP)에 얇은 구리 필름(Cu film)이 배치된 hybrid composite이 제안되었으며, 두께방향 열전도도가 최대가 될 수 있는 Cu film 배치조합을 도출하는데 양자 어닐링(Quantum Annealing)이 적용되었다. CFRP의 각 ply와 Cu film간의 상관관계 분석이 유한요소 해석을 통해 수행되었으며, 수행된 결과를 바탕으로 조합 최적화 문제가 정의되었다. 정의된 문제를 양자 어닐링에 임베딩하기 위한 공식화 과정이 진행되었으며 이를 통해 CFRP의 각 ply에 투입될 수 있는 Cu film 수량에 관한 목적함수와 제약조건이 수식으로 구현되었다. 공식화된 수식은 D-Wave 양자 어닐러에 임베딩되기 위해 Ocean SDK(software development kit)와 Leap을 통해 프로그래밍 되었으며, 양자 어닐링 과정을 통해 두께 방향 열전도도가 최대를 만족하는 최적의 Cu film 배치 조합이 도출되었다. 도출된 배치 조합은 투입될 수 있는 Cu film의 수량이 적어질수록 단순한 배치 형태를 나타내었으며, 수량이 많아질수록 세밀한 배치를 보였다. Cu film의 배치 수량에 따라 생성된 최적 조합들은 두께 방향으로의 고유 열전도 경로를 나타내었으며, Cu film의 횡방향 배치 자유도가 두께 방향 열전도도 결과에 민감하게 나타날 수 있음을 보였다.

Effect of Silicon Content over Fe-Cu-Si/C Based Composite Anode for Lithium Ion Battery

  • Doh, Chil-Hoon;Shin, Hye-Min;Kim, Dong-Hun;Chung, Young-Dong;Moon, Seong-In;Jin, Bong-Soo;Kim, Hyun-Soo;Kim, Ki-Won;Oh, Dae-Hee;Veluchamy, Angathevar
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권2호
    • /
    • pp.309-312
    • /
    • 2008
  • Two different anode composite materials comprising of Fe, Cu and Si prepared using high energy ball milling (HEBM) were explored for their capacity and cycling behaviors. Prepared powder composites in the ratio Cu:Fe:Si = 1:1:2.5 and 1:1:3.5 were characterized through X-Ray diffraction (XRD) and scanning electron microscope (SEM). Nevertheless, the XRD shows absence of any new alloy/compound formation upon ball milling, the elements present in Cu(1)Fe(1)Si(2.5)/Graphite composite along with insito generated Li2O demonstrate a superior anodic behavior and delivers a reversible capacity of 340 mAh/g with a high coulombic efficiency (98%). The higher silicon content Cu(1)Fe(1)Si(3.5) along with graphite could not sustain capacity with cycling possibly due to ineffective buffer action of the anode constituents.

연질 Cu 분말-가스분무 Ni계 벌크 비정질 복합분말의 방전플라즈마 소결에 관한 연구 (Spark Plasma Sintering of the Ductile Cu-Gas-atomized Ni Bulk Metallic Glass Composite Powders)

  • 김진천;김용진;김병기;김지순
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.351-359
    • /
    • 2006
  • Ni based($Ni_{57}Zr_{20}Ti_{18}Si_2Sn_3$) bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to $460^{\circ}C$ in the WC-Co hard metal mold.

소성가공이 가능한 고강도 Cu-Zr 복합재료 (Mechanically Workable High-strength Cu-Zr Composite)

  • 신상수;임경묵;김억수;이재철
    • 대한금속재료학회지
    • /
    • 제50권4호
    • /
    • pp.293-299
    • /
    • 2012
  • Ultrafine-grained or nanostructured alloys usually lack the strain hardening capability needed to sustain uniform tensile deformation under high stresses. To circumvent this problem, we fabricated the Cu-based composite reinforced with the 3-dimensionally interconnected $Cu_5Zr$ phase using the combined technique of rapid quenching and subsequent hot-rolling. The alloy exhibited a tensile ductility of ~2.5% together with a strength of 1.57 GPa, which exceeds the values of most commercially available Cu-Be alloys. In this study, we elucidated the structural origin of the high strength and tensile ductility of the developed alloy by examining the thermal stability of the $Cu_5Zr$ reinforcing phase and the energy (work) absorption capability of the Cu matrix.

Particle loading as a design parameter for composite radiation shielding

  • Baumann, N.;Diaz, K. Marquez;Simmons-Potter, K.;Potter, B.G. Jr.;Bucay, J.
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3855-3863
    • /
    • 2022
  • An evaluation of the radiation shielding performance of high-Z-particle-loaded polylactic acid (PLA) composite materials was pursued. Specimens were produced via fused deposition modeling (FDM) using copper-PLA, steel-PLA, and BaSO4-PLA composite filaments containing 82.7, 75.2, and 44.6 wt% particulate phase contents, respectively, and were tested under broad-band flash x-ray conditions at the Sandia National Laboratories HERMES III facility. The experimental results for the mass attenuation coefficients of the composites were found to be in good agreement with GEANT4 simulations carried out using the same exposure conditions and an atomistic mixture as a model for the composite materials. Further simulation studies, focusing on the Cu-PLA composite system, were used to explore a shield design parameter space (in this case, defined by Cu-particle loading and shield areal density) to assess performance under both high-energy photon and electron fluxes over an incident energy range of 0.5-15 MeV. Based on these results, a method is proposed that can assist in the visualization and isolation of shield parameter coordinate sets that optimize performance under targeted radiation characteristics (type, energy). For electron flux shielding, an empirical relationship was found between areal density (AD), electron energy (E), composition and performance. In cases where ${\frac{E}{AD}}{\geq}2MeV{\bullet}cm{\bullet}g^{-1}$, a shield composed of >85 wt% Cu results in optimal performance. In contrast, a shield composed of <10 wt% Cu is anticipated to perform best against electron irradiation when ${\frac{E}{AD}}<2MeV{\bullet}cm{\bullet}g^{-1}$.

Electrochemical Non-Enzymatic Glucose Sensor based on Hexagonal Boron Nitride with Metal-Organic Framework Composite

  • Ranganethan, Suresh;Lee, Sang-Mae;Lee, Jaewon;Chang, Seung-Cheol
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.379-385
    • /
    • 2017
  • In this study, an amperometric non-enzymatic glucose sensor was developed on the surface of a glassy carbon electrode by simply drop-casting the synthesized homogeneous suspension of hexagonal boron nitride (h-BN) nanosheets with a copper metal-organic framework (Cu-MOF) composite. Comprehensive analytical methods, including field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), cyclic voltammetry, electrochemical impedance spectroscopy, and amperometry, were used to investigate the surface and electrochemical characteristics of the h-BN-Cu-MOF composite. The FE-SEM, FT-IR, and XRD results showed that the h-BN-Cu-MOF composite was formed successfully and exhibited a good porous structure. The electrochemical results showed a sensor sensitivity of $18.1{\mu}A{\mu}M^{-1}cm^{-2}$ with a dynamic linearity range of $10-900{\mu}M$ glucose and a detection limit of $5.5{\mu}M$ glucose with a rapid turnaround time (less than 2 min). Additionally, the developed sensor exhibited satisfactory anti-interference ability against dopamine, ascorbic acid, uric acid, urea, and nitrate, and thus, can be applied to the design and development of non-enzymatic glucose sensors.