DOI QR코드

DOI QR Code

Production of Fe Amorphous Powders by Gas-Atomization Process and Subsequent Spark Plasma Sintering of Fe amorphous-ductile Cu Composite Powder Produced by Ball-milling Process (II) - II. SPS Behaviors of Composite Powders and their Characteristics -

가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu분말과의 복합화 및 SPS 거동 (II) - II. 복합분말의 SPS와 특성 -

  • Kim, Jin-Chun (School of Materials Science & Engineering, University of Ulsan) ;
  • Kim, Ji-Soon (School of Materials Science & Engineering, University of Ulsan) ;
  • Kim, H.J. (Eco Functional Materials Team, Korea Institute of Industrial Technology) ;
  • Kim, Jeong-Gon (Image Printing, Incheon City College)
  • 김진천 (울산대학교 첨단소재공학부) ;
  • 김지순 (울산대학교 첨단소재공학부) ;
  • 김휘준 (한국생산기술연구원 에코공정연구부) ;
  • 김정곤 (인천시립대 화상이미지)
  • Published : 2009.10.28

Abstract

Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The Fe-based amorphous powders and the Fe-Cu composite powders were compacted by a spark plasma sintering (SPS) process. Densification of the Fe amorphous-Cu composited powders by spark plasma sintering of was occurred through a plastic deformation of the each amorphous powder and Cu phase. The SPS samples milled by AGO-2 under 500 rpm had the best homogeneity of Cu phase and showed the smallest Cu pool size. Micro-Vickers hardness of the as-SPSed specimens was changed with the milling processes.

Keywords

References

  1. P. Duwez: Progress in Solid state chemistry, 3 (1967) 377. https://doi.org/10.1016/0079-6786(67)90038-6
  2. P. K. Rastogi and P. Duwez: J. Non-crystalline Solids, 5 (1970) 1. https://doi.org/10.1016/0022-3093(70)90192-4
  3. W. L. Johnson: Current Oponion in Solid State and Materials Science, 1 (1996) 383. https://doi.org/10.1016/S1359-0286(96)80029-5
  4. A. Inoue: Acta Materialia., 48 (2000) 279. https://doi.org/10.1016/S1359-6454(99)00300-6
  5. M. Hagiwara, A. Inoue and T. Masumoto: Metal Trans. A, 13 (1982) 373. https://doi.org/10.1007/BF02643346
  6. H. Fu, H. Zhang, H. Wang, Q. Zhang, and Z. Hu: Scripta Mater., 52 (2005) 669. https://doi.org/10.1016/j.scriptamat.2004.10.031
  7. C. C. Hays, C. P. Kim and W. L. Johnson: Mater. Sci. Eng. A, 304-306 (2001) 650. https://doi.org/10.1016/S0921-5093(00)01557-4
  8. Y. J. Kim, B. K. Kim and J. C. Kim: Mater. Sci. Eng. A, 449 (2007) 1071. https://doi.org/10.1016/j.msea.2006.02.314
  9. J. C. Kim, Y. J. Kim. B. K. Kim and J. S. Kim: J. Korean Powder Metall. Inst., 13 (2006) 351 (Korean). https://doi.org/10.4150/KPMI.2006.13.5.351
  10. D. V. Louzguine-Luzgin, G. Q. Xie, S. Li, A. Inoue, N. Yoshikawa, K. Mashiko, S. Taniguchi and M. Saito: J. Alloys and Compounds, 483 (2009) 78. https://doi.org/10.1016/j.jallcom.2008.07.158
  11. H. Li and S. H. Lee: Mater. Sci. Eng. A, 449-451 (2007) 189. https://doi.org/10.1016/j.msea.2006.02.262
  12. H. J. Ryu, J. H. Lim, J. S. Kim, J. C. Kim and H. J. Kim: J. Korean Powder Metall. Inst., In press (2009) (Korean).