• Title/Summary/Keyword: Cu-OSP

Search Result 48, Processing Time 0.022 seconds

Interfacial and Mechanical Properties of Sn-57Bi-1Ag Solder Joint with Various Conditions of a Laser Bonding Process (다양한 레이저 접합 공정 조건에 따른 Sn-57Bi-1Ag 솔더 접합부의 계면 및 기계적 특성)

  • Ahn, Byeongjin;Cheon, Gyeong-Yeong;Kim, Jahyeon;Kim, Jungsoo;Kim, Min-Su;Yoo, Sehoon;Park, Young-Bae;Ko, Yong-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.65-70
    • /
    • 2021
  • In this study, interfacial properties and mechanical properties of joints were reported after Cu pads finished with organic solderability preservative (OSP) on flame retardant-4 (FR-4) printed circuit board (PCB) and electronic components were joined with a Sn-57Bi-1Ag solder paste by using a laser bonding process. The laser bonding process was performed under various bonding conditions with changing a laser power and a bonding time and effects of bonding conditions on interfacial and mechanical properties of joints were analyzed. In order to apply for industry, properties of bonding joints using a reflow bonding process which are widely used were compared. When the laser bonding process were performed, we observed that Cu6Sn5 intermetallic compounds (IMCs) were fully formed at the interface although the bonding times were very short about 2 and 3 s. Furthermore, void formations of the joints by using the laser bonding process were suppressed at the joints with comparing to the reflow bonding process and shear strengths of bonding joints were higher than that by using the reflow bonding process. Therefore, in spite of a very short bonding time, it is expected that joints will be stably formed and have a high mechanical strength by using the laser bonding process.

Effects of Graphene Oxide Addition on the Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints (Graphene Oxide 첨가에 따른 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 Electromigration 특성 분석)

  • Son, Kirak;Kim, Gahui;Ko, Yong-Ho;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.81-88
    • /
    • 2019
  • In this study, the effects of graphene oxide (GO) addition on electromigration (EM) lifetime of Sn-3.0Ag-0.5Cu Pb-free solder joint between a ball grid array (BGA) package and printed circuit board (PCB) were investigated. After as-bonded, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) was formed at the interface of package side finished with electroplated Ni/Au, while $Cu_6Sn_5$ IMC was formed at the interface of OSP-treated PCB side. Mean time to failure of solder joint without GO solder joint under $130^{\circ}C$ with a current density of $1.0{\times}10^3A/cm^2$ was 189.9 hrs and that with GO was 367.1 hrs. EM open failure was occurred at the interface of PCB side with smaller pad diameter than that of package side due to Cu consumption by electrons flow. Meanwhile, we observed that the added GO was distributed at the interface between $Cu_6Sn_5$ IMC and solder. Therefore, we assumed that EM reliability of solder joint with GO was superior to that of without GO by suppressing the Cu diffusion at current crowding regions.

Thermal Shock Cycles Optimization of Sn-3.0 Ag-0.5 Cu/OSP Solder Joint with Bonding Strength Variation for Electronic Components (Sn-3.0 Ag-0.5 Cu/OSP 무연솔더 접합계면의 접합강도 변화에 따른 전자부품 열충격 싸이클 최적화)

  • Hong, Won-Sik;Kim, Whee-Sung;Song, Byeong-Suk;Kim, Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.152-159
    • /
    • 2007
  • When the electronics are tested with thermal shock for Pb-free solder joint reliability, there are temperature conditions with use environment but number of cycles for test don't clearly exist. To obtain the long term reliability data, electronic companies have spent the cost and times. Therefore this studies show the test method and number of thermal shock cycles for evaluating the solder joint reliability of electronic components and also research bonding strength variation with formation and growth of intermetallic compounds (IMC). SMD (surface mount device) 3216 chip resistor and 44 pin QFP (quad flat package) was utilized for experiments and each components were soldered with Sn-40Pb and Sn-3.0 Ag-0.5 Cu solder on the FR-4 PCB(printed circuit board) using by reflow soldering process. To reliability evaluation, thermal shock test was conducted between $-40^{\circ}C\;and\;+125^{\circ}C$ for 2,000 cycles, 10 minute dwell time, respectively. Also we analyzed the IMCs of solder joint using by SEM and EDX. To compare with bonding strength, resistor and QFP were tested shear strength and $45^{\circ}$ lead pull strength, respectively. From these results, optimized number of cycles was proposed with variation of bonding strength under thermal shock.

Study of high speed shear test for SnAgCu solder joint with variable pad finishes (표면 처리에 따른 SnAgCu계 솔더 접합부의 고속전단강도 연구)

  • Lee, Yeong-Gon;Kim, In-Rak;Lee, Wang-Gu;Park, Jae-Hyeon;Mun, Jeong-Tak;Jeong, Jae-Pil
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.194-195
    • /
    • 2009
  • 본 연구에서는 고속전단 강도에 표면 처리의 변화가 미치는 영향에 대해 연구하고자 하였다. 표면 처리를 ENIG, ENEPIG, OSP로 하여 고속전단시험을 수행하였다. 고속전단 결과 SAC105의 전단 강도 값은 ENIG가 가장 작았고, ENEPIG가 가장 높았다. SAC305의 전단 강도 값은 ENIG가 가장 작았고, OSP와 ENEPIG는 비슷한 값을 나타냈다.

  • PDF

Synthesis and Evaluation of Thermo-stable Organic Solderability Preservatives Based Upon Poly(vinyl pyridine-co-methylmethacrylate) (폴리(비닐피리딘-co-메틸메타아크릴레이트) 기반 열안정성 유기솔더보존제의 합성 및 평가)

  • Bui, Tien Van;Choi, Ho-Suk;Seo, Chung-Hee;Jang, Young-Sic;Heo, Ik-Sang
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • Recent popularity in mobile electronics requires higher standard on the mechanical strength of electronic packaging. Thus, the method of soldering between chip and substrate in electronic packaging process is changing from conventional method using intermetallic compound to a new method using organic solderability preservatives (OSP) in order to improve the stability and the reliability of final product. Since current OSPs have several serious problems like thermo-stability during packaging process, however, it is necessary to develop new OSPs having thermo-stability. The main purpose of this study is to develop various thermo-stable OSPs based upon poly(vinyl pyridine-co- methylmethacrylate) and to evaluate their anti-oxidation property protecting Cu pad, thermo-stability and solubility to acid- or alcohol-containing aqueous solution during pos-fluxing. All OSPs showed not only good anti-oxidation property, thermo-stability and solubility but also more advantages like low cost, less odor, and less hygroscopic.

Effect of Reflow Number and Surface Finish on the High Speed Shear Properties of Sn-Ag-Cu Lead-free Solder Bump (리플로우 횟수와 표면처리에 따른 Sn-Ag-Cu계 무연 솔더 범프의 고속전단 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.3
    • /
    • pp.11-17
    • /
    • 2009
  • The drop impact reliability comes to be important for evaluation of the life time of mobile electronic products such as cellular phone. The drop impact reliability of solder joint is generally affected by the kinds of pad and reflow number, therefore, the reliability evaluation is needed. Drop impact test proposed by JEDEC has been used as a standard method, however, which requires high cost and long time. The drop impact reliability can be indirectly evaluated by using high speed shear test of solder joints. Solder joints formed on 3 kinds of surface finishes OSP (Organic Solderability Preservation), ENIG (Electroless Nickel Immersion Gold) and ENEPIG (Electroless Nickel Electroless Palladium Immersion Gold) was investigated. The shear strength was analysed with the morphology change of intermetallic compound (IMC) layer according to reflow number. The layer thickness of IMC was increased with the increase of reflow number, which resulted in the decrease of the high speed shear strength and impact energy. The order of the high speed shear strength and impact energy was ENEPIG > ENIG > OSP after the 1st reflow, and ENEPIG > OSP > ENIG after 8th reflow.

  • PDF

Effect of Aging treatment and Epoxy on Bonding Strength of Sn-58Bi solder and OSP-finished PCB (Sn-58Bi Solder와 OSP 표면 처리된 PCB의 접합강도에 미치는 시효처리와 에폭시의 영향)

  • Kim, Jungsoo;Myung, Woo-Ram;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.4
    • /
    • pp.97-103
    • /
    • 2014
  • Among various lead-free solders, the Sn-58Bi solders have been considered as a highly promising lead-free solders because of its low melting temperature and high tensile strength. However, Sn-58Bi solder has the poor ductility. To enhance the mechanical property of Sn-58Bi solder, epoxy-enhanced Sn-58Bi solders have been studied. This study compared the microstructures and the mechanical properties of Sn-58Bi solder and Sn-58Bi epoxy solder with aging treatment. The solders ball were formed on the printed circuit board (PCB) with organic solderability preservative (OSP) surface finish, and then the joints were aged at 85, 95, 105 and $115^{\circ}C$ for up to 100, 300, 500 and 1000 hours. The shear test was conducted to evaluate the mechanical property of the solder joints. $Cu_6Sn_5$ intermetallic compound (IMC) layer grew with increasing aging time and temperature. The IMC layer for the Sn-58Bi epoxy solder was thicker than that for the Sn-58Bi solder. According to result of shear test, the shear strength of Sn-58Bi epoxy solder was higher than that of Sn-58Bi solder and the shear strength decreased with increasing aging time.

Mechanical Characteristic Evaluation of Sn-Ag-Cu Lead Free Solder Ball Joint on The Pad Geometry (패드 구조에 따른 Sn-Ag-Cu계 무연 솔더볼 접합부의 기계적 특성평가)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.41-47
    • /
    • 2010
  • The effect of PCB and BGA pad designs was investigated on the mechanical property of Pb-free solder joints. The mechanical property of solder joint was tested by three different test methods of drop impact tests, bending impact test, and high speed shear test. Two kinds of pad design such as NSMD (Non-Solder Mask Defined) and SMD (Solder Mask Defined) were applied with the OSP finished Pb-free solder (Sn-3.0Ag-0.5Cu, Sn-1.2Ag-0.5Cu). in the drop impact test and bending impact test, the characterized lifetime showed the same tendency, and SMD design showed better mechanical property of solder joint than NSMD regardless of test method, which was due to the different crack path. The fracture crack on SMD pad was propagated along the intermetallic compound (IMC) layer of solder joint, while the fracture crack on NSMD pad propagated through upper edge of land which shields pattern. In the high speed shear test, pad lift occurred on the solder joint of NSMD. SMD/SMD combination of pad design consequently illustrated the best mechanical property of BGA/PCB solder joint, followed by SMD/NSMD, NSMD/SMD, and NSMD/NSMD.

Flux residue effect on the electrochemical migration of Sn-3.0Ag-0.5Cu (Sn-3.0Ag-0.5Cu 솔더링에서 플럭스 잔사가 전기화학적 마이그레이션에 미치는 영향)

  • Bang, Jung-Hwan;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.29 no.5
    • /
    • pp.95-98
    • /
    • 2011
  • Recently, there is a growing tendency that fine-pitch electronic devices are increased due to higher density and very large scale integration. Finer pitch printed circuit board(PCB) is to be decrease insulation resistance between circuit patterns and electrical components, which will induce to electrical short in electronic circuit by electrochemical migration when it exposes to long term in high temperature and high humidity. In this research, the effect of soldering flux acting as an electrical carrier between conductors on electrochemical migration was investigated. The PCB pad was coated with OSP finish. Sn3.0Ag0.5Cu solder paste was printed on the PCB circuit and then the coupon was treated by reflow process. Thereby, specimen for ion migration test was fabricated. Electrochemical migration test was conducted under the condition of DC 48 V, $85^{\circ}C$, and 85 % relative humidity. Their life time could be increased about 22% by means of removal of flux. The fundamentals and mechanism of electrochemical migration was discussed depending on the existence of flux residues after reflow process.