• Title/Summary/Keyword: Cu-10Fe alloy

Search Result 161, Processing Time 0.025 seconds

Simulation of the Extrusion Process of Cu-10wt%Fe Alloy using Finite Element Analysis (유한요소해석을 이용한 Cu-10wt%Fe 합금의 압출공정 모사)

  • T. H. Yoo;K. Thool;S.-H. Choi
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.50-54
    • /
    • 2024
  • In this paper, the process of extruding Cu-10Fe alloy using a finite element analysis (FEA) was theoretically analyzed. To achieve this, the dependence of strain rate and temperature of the alloy required for the extrusion process was secured by utilizing databases for Cu and Fe and the KHL model. For microstructure analysis, FE-SEM with EDS was used to distinguish the phases present in Cu-10Fe alloy. The mechanical characteristics of Cu-10Fe alloy were secured using the results of fitting the mechanical properties of Copper and Steel from the Deform database to the KHL model. The deformation behavior within the alloy during hot extrusion was analyzed, providing insights into effective stress, effective strain, effective strain rate, and temperature. It was observed that the strain distribution was non-uniform. These research findings contribute to an improved understanding of the hot extrusion process of Cu-10Fe alloy and can aid in predicting the mechanical properties of the material.

Microstructural Evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl High Entropy Alloys

  • Hyun, Jae Ik;Kong, Kyeong Ho;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • In the present study, microstructural evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl alloys has been investigated. The as-cast CuCrFeNi alloy consists of a single fcc phase with the lattice parameter of 0.358 nm, while the as-cast CuCrFeNiMn alloy consists of (bcc+fcc1+fcc2) phases with lattice parameters of 0.287 nm, 0.366 nm, and 0.361 nm. The heat treatment of the cast CuCrFeNiMn alloy results in the different type of microstructure depending on the heat treatment temperature. At $900^{\circ}C$ a new thermodynamically stable phase appears instead of the bcc solid solution phase, while at $1,000^{\circ}C$, the heat treated microstructure is almost same as that in the as-cast state. The addition of Al in CuCrFeNiMn alloy changes the constituent phases from (fcc1+fcc2+bcc) to (bcc1+bcc2).

Effects of Fe and Cu Addition on the Microstructure and Tensile Properties of Al-Si-Mg Alloy for Compound Casting (복합주조용 Al-Si-Mg합금의 미세조직 및 인장성질에 미치는 Fe 및 Cu 첨가의 영향)

  • Kim, Jeong-Min;Jung, Ki-Chae;Kim, Chae-Young;Shin, Je-sik
    • Journal of Korea Foundry Society
    • /
    • v.41 no.1
    • /
    • pp.3-10
    • /
    • 2021
  • In the compound casting between the aluminum alloy and the cast iron, the iron component may be dissolved from the cast iron during the process and mixed into the aluminum melt, thereby forming various iron-containing intermetallic compounds and significantly deteriorating the tensile properties of the aluminum alloy. On the other hand, unlike Fe, which is added as an impurity, Cu is added to improve the mechanical properties of the aluminum alloy. In this study, the change in microstructure and tensile properties of aluminum alloys due to the addition of Fe and Cu was investigated. A large amount of iron-containing compounds such as coarse Al5FeSi phases were formed when the iron content was 1% or more, and the tensile properties were significantly reduced. In the case of the aluminum alloy to which Cu was added, an Al2Cu phase was additionally formed and the tensile strength was clearly improved.

Fabrication and characterization of Cu50-Fe50 alloy (Cu50-Fe50 합금의 제조 및 특성평가)

  • Lee, Jung-Il;Lam, Dilli;Paeng, Jong Min;Cho, Hyun Su;Yang, Su Min;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.4
    • /
    • pp.175-178
    • /
    • 2018
  • Copper is a well know material for use as heat sink or heat exchanger. However, copper has a considerable low tensile strength and temperature limit. A material that has a good thermal conductivity, low cost, but also excellent mechanical properties are desired. In order to identify the mechanism for the material properties of cast Cu-Fe alloys, $Cu_{50}-Fe_{50}$ (wt.%) alloy was produced by using a high-frequency induction furnace, a typical metal casting process. The Cu-Fe alloy consists of Cu, ${\alpha}$-Fe, ${\gamma}$-Fe with dendrite structures. The crystal structure and microstructure of the prepared $Cu_{50}-Fe_{50}$ alloy were systematically examined using XRD, FE-SEM, EDS and XRF for electrical devices.

Studies on Corrosion inhibition of 90Cu10NiFe Alloy by Eco-Friendly Organic Compound ; Sodium Diethyl Dithio Carbamate(NaDDC) (친환경 유기화합물(NaDDC)에 의한 90Cu10NiFe합금의 부식억제 연구)

  • Jung, Gil-Bong;Kim, Doo-Han;Lee, Sung-Do
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1018-1025
    • /
    • 2011
  • The improved properties of corrosion for 90Cu10NiFe alloy in natural seawater were explained by sodium diethyl dithio carbamate(NaDDC), namely organic compound, which is reagent for heavy metal extractions of waste water. The efficiency of NaDDC as corrosion inhibitor for 90Cu10NiFe alloy has been investigated in seawater after immersion in various concentrations of NaDDC solutions for 12~36hrs at pH 8.2 by weight loss test and electrochemical techniques including potentiodynamic polarization and SEM-EDS measurements. The results showed that the corrosion resistance of 90Cu10NiFe alloy improves with the increasing concentration of NaDDC but it did not improves with increasing time any more, so the highest inhibition efficiency was 93% at 100mg/L, 36hrs. The results obtained from weight losses and corrosion rates in polarization curve measurements were in good agreement. Therefore, it showed that NaDDC is a good inhibitor for copper corrosion of 90Cu10NiFe alloy.

Influences on Distribution of Solute Atoms in Cu-8Fe Alloy Solidification Process Under Rotating Magnetic Field

  • Zou, Jin;Zhai, Qi-Jie;Liu, Fang-Yu;Liu, Ke-Ming;Lu, De-Ping
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1275-1284
    • /
    • 2018
  • A rotating magnetic field (RMF) was applied in the solidification process of Cu-8Fe alloy. Focus on the mechanism of RMF on the solid solution Fe(Cu) atoms in Cu-8Fe alloy, the influences of RMF on solidification structure, solute distribution, and material properties were discussed. Results show that the solidification behavior of Cu-Fe alloy have influenced through the change of temperature and solute fields in the presence of an applied RMF. The Fe dendrites were refined and transformed to rosettes or spherical grains under forced convection. The solute distribution in Cu-rich phase and Fe-rich phase were changed because of the variation of the supercooling degree and the solidification rate. Further, the variation in solute distribution was impacted the strengthening mechanism and conductive mechanism of the material.

Mechanical and wear properties of Cu-Al-Ni-Fe-Sn-based alloy

  • Okayasu, Mitsuhiro;Izuka, Daiki;Ninomiya, Yushi;Manabe, Yuki;Shiraishi, Tetsuro
    • Advances in materials Research
    • /
    • v.2 no.4
    • /
    • pp.221-235
    • /
    • 2013
  • To obtain bronze with good mechanical properties and high wear resistance, a new bronze (CADZ) is proposed on the basis of various fundamental information. The CADZ consists of the elements Al10.5, Fe4.2, Sn3.7 and Ni3.1, and its design is based on Cu-Al10.5 alloy. The Cu-10.5%Al is very hard and brittle. To obtain the high material ductility of the Cu-10.5%Al alloy, an attempt was made to add a few percent of Sn. Moreover, to make high strength of the Cu alloy, microstructure with small grains was created by the proper amount of Fe and Ni (Fe/Ni = 0.89). The mechanical properties of the CADZ sample have been examined experimentally, and those were compared with commercial bronzes. The tensile strength and wear resistance of CADZ are higher than those for commercial bronzes. Although the ductility of CADZ is the lower level, the strain to failure of CADZ is about 2.0~5.0% higher than that for the Cu-Al10.5 alloy. Details of the microstructural effects on the mechanical properties in the CADZ sample were further discussed using various experimental results.

Crystallization and Magnetic Properties of Non-Equilibrium Al(Fe-Cu) Alloy Powders Produced by Rod Milling and Chemical Leaching (Rod Milling과 Chemical Leaching에 의해 제작된 비평형 Al(Fe-Cu) 합금 분말의 결정화 및 자기적 특성)

  • Kim Hyun-Goo
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.486-492
    • /
    • 2004
  • We report the crystallization and magnetic properties of non-equilibrium $Al_{0.6}(Fe_{x}Cu_{1-x})_{0.4}(x=0.25, 0.50, 0.75)$ alloy powders produced by rod-milling as well as by new chemical leaching. X-ray diffractometry, transmission electron microscopy, differential scanning calorimetry and vibrating sample magnetometry were used to characterize the as-milled and leached specimens. After 400 h or 500 h milling, only the broad peaks of nano bcc crystalline phases were detected in the XRD patterns. The crystallite size, the peak and the crystallization temperatures increased with increasing Fe. After being annealed at $600{^\circ}C$ for 1 h for as-milled alloy powders, the peaks of bcc $AlCu_{4}\;and\;Al_{13}Cu_{4}Fe_{3}\;for\;x=0.25,\;bcc\;AlCu_{4}\;and\;Al_{5}Fe_{2}\;for\;x=0.50,\;and\;Al_{5}Fe_{2},\;and\;Al_{0.5}Fe_{0.5}\;for\;x=0.75$ are observed. After being annealed at $500{^\circ}\;and\;600{^\circ}C$for 1 h for leached specimens, these non-equi-librium phases transformed into fcc Cu and $CuFe_{2}O_{4}$phases for the x=0.25 specimen, and into bcc ${\alpha}-Fe,\;fcc\;Cu,\;and\;CuFe_{2}O_{4}$ phases for both the x=0.50 and the x=0.75 specimens. The saturation magnetization decreased with increasing milling time for $Al_{0.6}(Fe_{x}Cu_{1-x})_{0.4}$ alloy powders. On cooling the leached specimens from $800{\~}850^{\circ}C$,\;the magnetization first sharply increase at about $491.4{\circ}C,\;745{\circ}C,\;and\;750.0{\circ}C$ for x=0.25, x=0.50, and x=0.75 specimens, repectively.

Magnetic Properties of $\alpha$-Fe Based Nd-Fe-B Nanocrystalline with High Remanence (고잔류자화 $\alpha$-Fe기 Nd-Fe-B 초미세결정립 합금의 자기특성)

  • 조용수;김윤배;박우식;김창석;김택기
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.38-41
    • /
    • 1995
  • The effects of Nb and Cu additives as will as substitutional Co into $Nd_{4}Fe_{85.5}B_{10.5}$ melt-spun alloy were studied aiming for finding a $\alpha$-Fe based Nd-Fe-B composite alloys with high energy product. The addition of Nb and Cu to $Nd_{4}Fe_{85.5}B_{10.5}$ decreased the average grain size and increased the coercivity up to 207kA/m(2.6kOe), Further-more, the substitution of Co for Fe in $Nd_{4}Fe_{82}B_{10}Nb_{3}Cu_{1}$ alloy resulted in the decrease of the average grain size (<20nm) and improved the hard magnetic properties. The remanence, coercivity and energy product of optimally annealed $Nd_{4}Fe_{74}Co_{8}B_{10}Nb_{3}Cu_{1}$ alloy were 1.345, 219kA/m(2.75kOe) and $95.5kJ/m^{3}$(12MGOe), respectively.

  • PDF

Thermal Properties and Microstructural Changes of Fe-Co System Valve Seat Alloy by High Densification Process (고밀도화 공정에 의한 Fe-Co 계 밸브시트 합금의 조직변화와 열적 특성)

  • Ahn, In-Shup;Park, Dong-Kyu;Ahn, Kwang-Bok;Shin, Seoung-Mok
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.112-118
    • /
    • 2019
  • Infiltration is a popular technique used to produce valve seat rings and guides to create dense parts. In order to develop valve seat material with a good thermal conductivity and thermal expansion coefficient, Cu-infiltrated properties of sintered Fe-Co-M(M=Mo,Cr) alloy systems are studied. It is shown that the copper network that forms inside the steel alloy skeleton during infiltration enhances the thermal conductivity and thermal expansion coefficient of the steel alloy composite. The hard phase of the CoMoCr and the network precipitated FeCrC phase are distributed homogeneously as the infiltrated Cu phase increases. The increase in hardness of the alloy composite due to the increase of the Co, Ni, Cr, and Cu contents in Fe matrix by the infiltrated Cu amount increases. Using infiltration, the thermal conductivity and thermal expansion coefficient were increased to 29.5 W/mK and $15.9um/m^{\circ}C$, respectively, for tempered alloy composite.