Browse > Article
http://dx.doi.org/10.4150/KPMI.2019.26.2.112

Thermal Properties and Microstructural Changes of Fe-Co System Valve Seat Alloy by High Densification Process  

Ahn, In-Shup (School of Nano and Advanced Materials Science & Engineering, Gyeongsang National University)
Park, Dong-Kyu (LINC, Gyeongsang National University)
Ahn, Kwang-Bok (GKS Co. Ltd.)
Shin, Seoung-Mok (GKS Co. Ltd.)
Publication Information
Journal of Powder Materials / v.26, no.2, 2019 , pp. 112-118 More about this Journal
Abstract
Infiltration is a popular technique used to produce valve seat rings and guides to create dense parts. In order to develop valve seat material with a good thermal conductivity and thermal expansion coefficient, Cu-infiltrated properties of sintered Fe-Co-M(M=Mo,Cr) alloy systems are studied. It is shown that the copper network that forms inside the steel alloy skeleton during infiltration enhances the thermal conductivity and thermal expansion coefficient of the steel alloy composite. The hard phase of the CoMoCr and the network precipitated FeCrC phase are distributed homogeneously as the infiltrated Cu phase increases. The increase in hardness of the alloy composite due to the increase of the Co, Ni, Cr, and Cu contents in Fe matrix by the infiltrated Cu amount increases. Using infiltration, the thermal conductivity and thermal expansion coefficient were increased to 29.5 W/mK and $15.9um/m^{\circ}C$, respectively, for tempered alloy composite.
Keywords
Fe-Co alloy; Valve seat; High density; Infiltration; Thermal properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 E. Meurisse, C. Ernst and W. Bleck: Improvement of thermalconductivity of hot-work tool steels by alloy design and heat treatment. In: Leitner H, Kranz R, Tremmel A (Ed.), TOOL 2012, Verlag Gutenberghaus, Knittelfeld, (2012) 215.
2 SA. Rovalma: EPO, EP 1887096A1 (2008).
3 M. S. Lane: Modern Development in Powder Metallurgy, 15 (1984) 797.
4 K. Shimada: Int. J. Powder Metall., 27 (1991) 357.
5 J. Wilzer: On the relationship of heat treatment, microsctructure, mechanical properties, and thermal conductivity of toolsteels. In: Leitner H, Kranz R, Tremmel A (Ed.) TOOL 2012, Verlag Gutenberghaus, Knittelfeld, (2012) 143.
6 J. Wilzer, F. Ludtke, S. Weber and W. Theisen: J. Mater. Sci., 48 (2013) 8483.   DOI
7 J. Wilzer, S. Weber, C. Escher and W. Theisen: HTM J. Heat Treat. Mater., 69 (2014) 325.   DOI
8 K. J. Kim, K. B. Kim, D. H. Lee, J. K. Park and D. K Jeong: J. Korean Powder Metall. Inst., 19 (2012) 189.   DOI
9 G. Straffelini, V. Fontanari, A. Molinari and B. Tesi: Powder Metall., 36 (1993) 135.   DOI
10 C. Schade, T. Murphy, A. Lawley and R. Doherty: Powder Metall., 49 (2013) 15.   DOI
11 S. Klein, S. Weber and W. Theisen: J. Mater. Sci., 50 (2015) 3586.   DOI
12 H. K. Moon, H. R. Yang, K. S. Cho, K. B. Lee and H. Kwon: Korean J. Met. Mater., 46 (2008) 477.
13 S. T. Choi, J. K. Park, C. S. Choi and I. S. Chung: J. Korean Powder Metall. Inst., 10 (2003) 89.   DOI
14 J. K. Choi, J. Kwan. Park and I. S. Chung: J. Korean Powder Metall. Inst., 6 (1999) 163.
15 Y. K. Kim, J. K. Park and K. A. Lee: J. Korean Powder Metall. Inst., 25 (2018) 36.   DOI