DOI QR코드

DOI QR Code

Thermal Properties and Microstructural Changes of Fe-Co System Valve Seat Alloy by High Densification Process

고밀도화 공정에 의한 Fe-Co 계 밸브시트 합금의 조직변화와 열적 특성

  • Received : 2019.03.04
  • Accepted : 2019.04.04
  • Published : 2019.04.28

Abstract

Infiltration is a popular technique used to produce valve seat rings and guides to create dense parts. In order to develop valve seat material with a good thermal conductivity and thermal expansion coefficient, Cu-infiltrated properties of sintered Fe-Co-M(M=Mo,Cr) alloy systems are studied. It is shown that the copper network that forms inside the steel alloy skeleton during infiltration enhances the thermal conductivity and thermal expansion coefficient of the steel alloy composite. The hard phase of the CoMoCr and the network precipitated FeCrC phase are distributed homogeneously as the infiltrated Cu phase increases. The increase in hardness of the alloy composite due to the increase of the Co, Ni, Cr, and Cu contents in Fe matrix by the infiltrated Cu amount increases. Using infiltration, the thermal conductivity and thermal expansion coefficient were increased to 29.5 W/mK and $15.9um/m^{\circ}C$, respectively, for tempered alloy composite.

Keywords

References

  1. E. Meurisse, C. Ernst and W. Bleck: Improvement of thermalconductivity of hot-work tool steels by alloy design and heat treatment. In: Leitner H, Kranz R, Tremmel A (Ed.), TOOL 2012, Verlag Gutenberghaus, Knittelfeld, (2012) 215.
  2. SA. Rovalma: EPO, EP 1887096A1 (2008).
  3. M. S. Lane: Modern Development in Powder Metallurgy, 15 (1984) 797.
  4. K. Shimada: Int. J. Powder Metall., 27 (1991) 357.
  5. J. Wilzer: On the relationship of heat treatment, microsctructure, mechanical properties, and thermal conductivity of toolsteels. In: Leitner H, Kranz R, Tremmel A (Ed.) TOOL 2012, Verlag Gutenberghaus, Knittelfeld, (2012) 143.
  6. J. Wilzer, F. Ludtke, S. Weber and W. Theisen: J. Mater. Sci., 48 (2013) 8483. https://doi.org/10.1007/s10853-013-7665-2
  7. J. Wilzer, S. Weber, C. Escher and W. Theisen: HTM J. Heat Treat. Mater., 69 (2014) 325. https://doi.org/10.3139/105.110237
  8. K. J. Kim, K. B. Kim, D. H. Lee, J. K. Park and D. K Jeong: J. Korean Powder Metall. Inst., 19 (2012) 189. https://doi.org/10.4150/KPMI.2012.19.3.189
  9. G. Straffelini, V. Fontanari, A. Molinari and B. Tesi: Powder Metall., 36 (1993) 135. https://doi.org/10.1179/pom.1993.36.2.135
  10. C. Schade, T. Murphy, A. Lawley and R. Doherty: Powder Metall., 49 (2013) 15. https://doi.org/10.1179/174329006X103978
  11. S. Klein, S. Weber and W. Theisen: J. Mater. Sci., 50 (2015) 3586. https://doi.org/10.1007/s10853-015-8919-y
  12. H. K. Moon, H. R. Yang, K. S. Cho, K. B. Lee and H. Kwon: Korean J. Met. Mater., 46 (2008) 477.
  13. S. T. Choi, J. K. Park, C. S. Choi and I. S. Chung: J. Korean Powder Metall. Inst., 10 (2003) 89. https://doi.org/10.4150/KPMI.2003.10.2.089
  14. J. K. Choi, J. Kwan. Park and I. S. Chung: J. Korean Powder Metall. Inst., 6 (1999) 163.
  15. Y. K. Kim, J. K. Park and K. A. Lee: J. Korean Powder Metall. Inst., 25 (2018) 36. https://doi.org/10.4150/KPMI.2018.25.1.36