• Title/Summary/Keyword: Cu and Sn

Search Result 1,041, Processing Time 0.029 seconds

The Wetting Property of Sn-3.5Ag Eutectic Solder (Sn-3.5Ag 공정 솔더의 젖음특성)

  • 윤정원;이창배;서창제;정승부
    • Journal of Welding and Joining
    • /
    • v.20 no.1
    • /
    • pp.91-96
    • /
    • 2002
  • Three different kinds of substrate used in this study : bare Cu, electroless Ni/Cu substrate with a Nilayer thickness of $5\mu\textrm{m}$, immersion Au/electroless Ni/Cu substrate with the Au and Ni layer of $0.15\mu\textrm{m}$ and $5\mu\textrm{m}$ thickness, respectively. The wettability and interfacial tension between various substrate and Sn-3.5Ag solder were examined as a function of soldering temperature, types of flux. The wettability of Sn-3.5Ag solder increased with soldering temperature and solid content of flux. The wettability of Sn-3.5Ag solder was affected by the substrate metal finish used, i.e., nickel, gold and copper. Intermetallic compound formation between liquid solder and substrate reduced the interfacial energy and decreased wettability.

Studies on the solder joint reliability of Sn-3.0Ag-0.5Cu solder on Ni/Au, OSP, Sn finished PCB (Ni/Au, OSP, Sn으로 표면처리된 PCB에 Sn-3.0Ag-0.5Cu로 실장된 칩캐퍼시터 솔더 접합부의 신뢰성에 관한 연구)

  • Park, No-Chang;Hong, Won-Sik;Song, Byeong-Seok
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.187-189
    • /
    • 2006
  • 최근 유연솔더에서 무연솔더로 전환함에 따라서 PCB의 도금이 솔더접합부의 각도에 미치는 영향이 중요하게 되었다. 현재 PCB 도금은 Sn, Au, OSP 등으로 다양하게 진행되고 있다. 그러나 PCB 도금이 솔더접합부의 강도에 미치는 영향에 대한 연구는 아직 미비하다. 따라서 본 연구에서는 PCB 도금(Sn, Au, OSP)이 무연솔더(Sn-3.0Ag-0.5Cu) 접합부의 초기 전단강도에 미치는 영향과 열사이클시험 후 솔더접합부의 전단강도에 미치는 영향에 대해서 연구하였다.

  • PDF

Interconnection Process and Electrical Properties of the Interconnection Joints for 3D Stack Package with $75{\mu}m$ Cu Via ($75{\mu}m$ Cu via가 형성된 3D 스택 패키지용 interconnection 공정 및 접합부의 전기적 특성)

  • Lee Kwang-Yong;Oh Teck-Su;Won Hye-Jin;Lee Jae-Ho;Oh Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.111-119
    • /
    • 2005
  • Stack specimen with three dimensional interconnection structure through Cu via of $75{\mu}m$ diameter, $90{\mu}m$ height and $150{\mu}m$ pitch was successfully fabricated using subsequent processes of via hole formation with Deep RIE (reactive ion etching), Cu via filling with pulse-reverse electroplating, Si thinning with CMP, photolithography, metal film sputtering, Cu/Sn bump formation, and flip chip bonding. Contact resistance of Cu/Sn bump and Cu via resistance could be determined ken the slope of the daisy chain resistance vs the number of bump joints of the flip chip specimen containing Cu via. When flip- chip bonded at $270^{\circ}C$ for 2 minutes, the contact resistance of the Cu/Sn bump joints of $100{\times}100{\mu}m$ size was 6.7m$\Omega$ and the Cu via resistance of $75{\mu}m$ diameter, $90{\mu}m$ height was 2.3m$\Omega$.

  • PDF

Properties of Lead-free Solder Joints on Flexible Substrate for Automotive Electronics (자동차 전장을 위한 플렉시블 기판 무연 솔더 접합부 특성)

  • Ahn, Sungdo;Choi, Kyeonggon;Park, Dae Young;Jeong, Gyu-Won;Baek, Seungju;Ko, Yong-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.25-30
    • /
    • 2018
  • Sn-Pb solder has been used in automotive electronics for decades. However, recently, due to the environmental and health concerns, some international environmental organizations such as the end-of-life vehicle (ELV) enacted legislation banning of the Pb usage in automotive electronics. For this reason, many studies to develop and promote Pb-free soldering have been significantly reported. Meanwhile, because of flexibility and lightweight, flexible printed circuit boards (FPCBs) have been increasingly used in automotive electronics for lightweight to improve fuel efficiency and space utilization. Although the properties of lead-free solders for automotive electronics have been widely studied, there is a lack of research on the reliability performance of the lead-free solder joint on FPCB under user conditions. This study reported the properties of solder joints between Pb-free solders such as Sn3.0Ag0.5Cu, Sn0.7Cu and Sn0.5Cu0.01Al (Si), and various FPCBs finished with organic solderability preservative (OSP) and electroless nickel immersion gold (ENIG). To evaluate on joint properties and reliabilities with different solder compositions and surface-finishing materials, pull strength test, thermal shock test, and bending cycle test were performed and analyzed. After the bending cycle test of solder joint on OSP-finishing, the fractures were occurred in solder and the lifetime of Sn3.0Ag0.5Cu solder joint was the longest.

Effect of Film Thickness on Gas Sensing Behavior of Thin-Film-Type Gas Sensor (박막 형 가스 센서에 있어서 가스 감지 속도에 대한 막 두께의 영향)

  • Yu, Do-Joon;Jun Tamaki;Norio Miura;Noboru Yamazoe;Park, Soon-Ja
    • Korean Journal of Materials Research
    • /
    • v.6 no.7
    • /
    • pp.716-722
    • /
    • 1996
  • Effect of Film thickness on the sensing behavior of thin-film-type ags sensor has been analyzed by deriving an equation form a simple model, and the equation was applied to the sensing behavior of ${SnO}_{2}$ and CuO-${SnO}_{2}$ thin-film sensors. It was revealed, from the equation,that the gas sensing property was closely related to gas diffusivity into the film which was a function of film thickness, reactivity of the gas detected with sensing material, operating temperature, etc. The equation derived was well consistent with the experimental results from ${SnO}_{2}$ and CuO-${SnO}_{2}$ thin-film sensors and explained their different ${H}_{2}S$ sensing behaviors. Finally, a medel was suggested, explainning the effect of gas diffusivity on sensing be havior of oxide semiconductor sensor.

  • PDF

Microwave Frequency Responses of Novel Chip-On-Chip Flip-Chip Bump Joint Structures (새로운 칩온칩 플립칩 범프 접합구조에 따른 초고주파 응답 특성)

  • Oh, Kwang-Sun;Lee, Sang-Kyung;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1120-1127
    • /
    • 2013
  • In this paper, novel chip-on-chip(CoC) flip-chip bump structures using chip-on-wafer(CoW) process technology are proposed, designed and fabricated, and their microwave frequency responses are analyzed. With conventional bumps of Cu pillar/SnAg and Cu pillar/Ni/SnAg and novel Polybenzoxazole(PBO)-passivated bumps of Cu pillar/SnAg, Cu pillar/Ni/SnAg and SnAg with the deposition option of $2^{nd}$ Polyimide(PI2) layer on the wafer, 10 kinds of CoC samples are designed and their frequency responses up to 20 GHz are investigated. The measurement results show that the bumps on the wafers with PI2 layers are better for the batch flip-chip process and have average insertion loss of 0.14 dB at 18 GHz. The developed bump structures for chips with fine-pitch pads show similar or slightly better insertion loss of 0.11~0.14 dB up to 18 GHz, compared with that of 0.13~0.17 dB of conventional bump structures in this study, and we find that they could be utilized in various microwave packages for high integration density.

Evaluation of Shear Strength for Pb-free Solder/Ni and Cu Plate Joints due to Reflow Time (리플로우 시간에 따른 Pb-free 솔더/Ni 및 Cu 기판 접합부의 전단강도 평가)

  • Ha, Byeori;Yu, Hyosun;Yang, Sungmo;Ro, Younsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.134-141
    • /
    • 2013
  • Reflow soldering process is essential in electronic package. Reflow process for a long time results from the decrease of reliability because IMC is formed excessively. Solder alloys of Sn-37Pb and Sn-Ag with different kinds of Cu contents (0, 0.5 and 1 wt.%) as compared with Ni and Cu plate joints are investigated according to varying reflow time. The interfaces of solder joints are observed to analyze IMC (intermetallic compound) growth rate by scanning electron microscope (SEM). Shear test is also performed by using SP (Share-Punch) tester. The test results are compared with the solder joints of two different plates (Ni and Cu plate). $Cu_6Sn_5$ IMCs are formed on Cu plate interfaces after reflows in all samples. Ni3Sn4 and $(Cu,Ni)_6Sn_5$ IMCs are also formed on Ni plate interfaces. The IMC layer forms are affected by reflow time and contents of solder alloy. These results show that mechanical strength of solder joints strongly depends on thickness and shape of IMC.

A Study of Transient Liquid Phase Bonding with Ni-foam/Sn-3.0Ag-0.5Cu Composite Solder for EV Power Module Package Application (Ni-foam/Sn-3.0Ag-0.5Cu 복합 솔더 소재를 이용한 EV 파워 모듈 패키지용 천이 액상 확산 접합 연구)

  • Young-Jin Seo;Min-Haeng Heo;Jeong-Won Yoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.1
    • /
    • pp.55-62
    • /
    • 2023
  • In this study, Sn-3.0Ag-0.5Cu (wt.%, SAC305) solder dipping process was performed between Ni-foam skeleton with different pore per inch (PPI) to fabricate Ni-foam/SAC305 composite solder, and then applied to the transient liquid phase (TLP) bonding process to evaluate the microstructure and mechanical properties of the bonded joint. The Ni-foam/SAC305 composite solder preform consisted of Ni-foam and SAC305, and an intermetallic compound (IMC) having a (Ni,Cu)3Sn4 composition was formed at the Ni-foam interface. During TLP bonding process, the IMC at the Ni-foam interface was converted to (Ni,Cu)3Sn4+Au, and as the bonding time increased, the Ni-foam and SAC305 continuously reacted, and the bonded joint was converted into an IMC. And it was confirmed that the 130 PPI Ni-foam/SAC305 composite solder joint was converted into an IMC at the fastest rate. As a result of performing a shear test to confirm the effect of Ni-foam on mechanical properties, solder joints under all conditions exhibited excellent mechanical properties of 50 MPa or more in the early stages of the TLP bonding process, and the shear strength tends to increase as the bonding time increases.

Characterization and deposition of Cu2ZnSnS4 film for thin solar cells via sol-gel method (Sol-gel법에 의한 박막태양전지용 Cu2ZnSnS4 박막의 증착과 특성)

  • Kim, Gwan-Tae;Lee, Sang-Hyun;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.3
    • /
    • pp.127-133
    • /
    • 2012
  • To achieve low-cost and high-efficiency of thin-film solar cells applications, the sol-gel method that can be coated on a large area substrate, obtain homogeneous thin films of high purity was used. We studied structural and optical characteristics versus annealing temperature of $Cu_2ZnSnS_4$ which has kesterite structure by substitution low-cost sulfur (S) instead of high-cost selenium (Se). By analyzing XRD patterns, main peak was observed at $2{\theta}=28.5^{\circ}$ when Zn/Sn ratio is 0.8/1.2. And when we observed kesterite structure which has orientation of (112) direction, the more annealing temperature increase the bigger strength of (112) direction is. $Cu_2ZnSnS_4$ thin film showed characteristics of kesterite structure at $550^{\circ}C$. And when we calculated lattice constant, a = 5.5047 and $c=11.014{\AA}$ as same JCPDS (Joint Committee on Powder Standards) data measured. We measured optical transmittance to analyze optical characteristics. Optical transmittance was lower than 65 % at visible ray (${\lambda}=380{\sim}770nm$).

Joining characteristics of Sn-3.5Ag solder bump by induction heating (유도가열에 의한 Sn-3.5Ag 솔더 범프의 접합 특성에 관한 기초연구)

  • Choe, Jun-Gi;Bang, Hui-Seon;Rajesh, S.R.;Bang, Han-Seo
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.181-183
    • /
    • 2006
  • This paper studies the mechanical behaviors of Sn-3.5Ag solder joint against substrate(such as Au/Ni/Cu, Au/cu, Ni/Cu and Cu pad) after induction heating, a new soldering method. It was found that the solder bump formation depends on the time and current of the induction heating system. Also the heating value of the solder bump were found to vary with respect to the thermal conductivity of the pads on the substrate. In case of Au/Ni/Cu pad and Au/Cu pad, solder bump's shear strength were high for the heating time of $1.5{\sim}2sec$. For Ni/Cu pad, solder bump's shear strength were found to increase with time increment.

  • PDF