• Title/Summary/Keyword: Cu(In,Ga)Se$_2$

Search Result 266, Processing Time 0.023 seconds

Effect of Process Variation of Al Grid and ZnO Transparent Electrode on the Performance of Cu(In,Ga)Se2 Solar Cells (Al 그리드와 ZnO 투명전도막 의 공정변화에 따른 Cu(In,Ga)Se2 박막태양전지의 특성 연구)

  • Cho, Bo Hwan;Kim, Seon Cheol;Mun, Sun Hong;Kim, Seung Tae;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.1
    • /
    • pp.32-38
    • /
    • 2015
  • CIGS solar cell consisted of various films. In this research, we investigated electrode materials in $Cu(In,Ga)Se_2$ (CIGS) cells, including Al-doped ZnO (ZnO:Al), intrinsic ZnO (i-ZnO), and Al films. The sputtered ZnO:Al film with a sputtering power at 200W showed the lowest series resistance and highest cell efficiency. The electrical resistivity of the 200-W sputtered ZnO:Al film was $5.2{\times}10^{-4}{\Omega}{\cdot}cm$ by the rapid thermal annealing at $200^{\circ}C$ for 1 min. The electrical resistivity of i-ZnO was not measurable due to its high resistance. But the optical transmittance was highest with less oxygen supply and high efficiency cell was achieved with $O_2/(Ar+O_2)$ ratio was 1% due to the increase of short-circuit current. No significant change in the cell performance by inserting a Ni layer between Al and ZnO:Al films was observed.

BIPV 응용을 위한 플렉서블 Cu(In,Ga)Se2 박막태양전지의 연구현황 및 전망

  • Sin, Dong-Hyeop;Kim, Gi-Hwan;Jo, Jun-Sik;Eo, Yeong-Ju;An, Seung-Gyu;Jeong, In-Yeong;Jo, Yun-Ae;Song, Su-Min;Gwak, Ji-Hye;Yun, Jae-Ho
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.3 no.3
    • /
    • pp.8-17
    • /
    • 2017
  • $Cu(In,Ga)Se_2$ (CIGS) 태양전지 기술은 1970년대 처음으로 소개된 이래 지속적인 기술적 진보를 통해 현재 소면적 유리 기판기준으로 세계최고효율 22.6%을 달성하였다. 최근에는 유리 기판뿐만 아니라 플렉서블 기판에도 적용되어 20%가 넘는 고효율이 유지됨으로써, 플렉서블 CIGS 박막태양전지의 BIPV로 응용에 대한 관심이 증가하고 있다. 따라서 본 글에서는 플렉서블 CIGS 박막태양전지의 주요 요소 기술에 대해서 살펴보고, 국내외 연구 및 산업적 현황 및 향후 전망에 대해서 기술하고자 한다.

  • PDF

Growth and Characterization of $CulnSe_2$ Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 $CulnSe_2$ 박막 성장과 특성)

  • 홍광준;이상열;박진성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.445-454
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the CuInSe$_2$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, CuInSe$_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 62$0^{\circ}C$ and 41$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of CuInSe$_2$ single crystal thin films measured from Hall effect fby van der Pauw method are 9.62x10$^{16}$ cm$^{-3}$ , 296$\textrm{cm}^2$/V.s at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the CuInSe$_2$ single crystal thin film we have found that he values of spin orbit splitting ΔSo and the crystal field splitting ΔCr were 6.1 meV and 175.2 meV at 10K, respectively. From the photoluminescence measurement on CuInSe$_2$ single crystal thin film we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton (D$^{\circ}$,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excition were 7meV and 5.9meV, respectivity. by Haynes rule, an activation energy of impurity was 50 meV.

  • PDF

Growth and Characterization of $CdGa_2Se_4$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $CdGa_2Se_4$ 단결정 박막 성장과 특성)

  • Choi, S.P.;Hong, K.J.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.328-337
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $CdGa_2Se_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdGa_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3}$, $345\;cm^2/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_2$ single crystal thin film, we have found that the values of spin orbit splitting ${\Delta}So$ and the crystal field splitting ${\Delta}Cr$ were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on $CdGa_2Se_4$ single crystal thin film, we observed free excition ($E_x$) existing only high quality crystal and neutral bound exiciton ($D^{\circ}$, X) having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral donor bound excition were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV.

  • PDF

Interface Analysis of Cu(In,Ga)Se2 and ZnS Formed Using Sulfur Thermal Cracker

  • Cho, Dae-Hyung;Lee, Woo-Jung;Wi, Jae-Hyung;Han, Won Seok;Kim, Tae Gun;Kim, Jeong Won;Chung, Yong-Duck
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.265-271
    • /
    • 2016
  • We analyzed the interface characteristics of Zn-based thin-film buffer layers formed by a sulfur thermal cracker on a $Cu(In,Ga)Se_2$ (CIGS) light-absorber layer. The analyzed Zn-based thin-film buffer layers are processed by a proposed method comprising two processes - Zn-sputtering and cracker-sulfurization. The processed buffer layers are then suitable to be used in the fabrication of highly efficient CIGS solar cells. Among the various Zn-based film thicknesses, an 8 nm-thick Zn-based film shows the highest power conversion efficiency for a solar cell. The band alignment of the buffer/CIGS was investigated by measuring the band-gap energies and valence band levels across the depth direction. The conduction band difference between the near surface and interface in the buffer layer enables an efficient electron transport across the junction. We found the origin of the energy band structure by observing the chemical states. The fabricated buffer/CIGS layers have a structurally and chemically distinct interface with little elemental inter-diffusion.

Analysis of the Current-voltage Curves of a Cu(In,Ga)Se2 Thin-film Solar Cell Measured at Different Irradiation Conditions

  • Lee, Kyu-Seok;Chung, Yong-Duck;Park, Nae-Man;Cho, Dae-Hyung;Kim, Kyung-Hyun;Kim, Je-Ha;Kim, Seong-Jun;Kim, Yeong-Ho;Noh, Sam-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.321-325
    • /
    • 2010
  • We analyze the current density - voltage (J - V) curve of a Cu(In,Ga)$Se_2$ (CIGS) thin-film solar cell measured at different irradiation power densities. For the solar-cell sample investigated in this study, the fill factor and power conversion efficiency decreased as the irradiation power density (IPD) increased in the range of 2 to 5 sun. Characteristic parameters of solar cell including the series resistance ($r_s$), the shunt resistance ($r_{sh}$), the photocurrent density ($J_L$), the saturation current density ($J_s$) of an ideal diode, and the coefficient ($C_s$) of the diode current due to electron-hole recombination via ionized traps at the p-n interface are determined from a theoretical fit to the experimental data of the J - V curve using a two-diode model. As IPD increased, both $r_s$ and $r_{sh}$ decreased, but $C_s$ increased.

Electrical and Optical Properties with the Thickness of Cu(lnGa)$Se_2$ Absorber Layer (Cu(InGa)$Se_2$ 광흡수막의 두께에 따른 태양전지의 전기광학 특성)

  • Kim, S.K.;Lee, J.C.;Kang, K.H.;Yoon, K.H.;Park, I.J.;Song, J.;Han, S.O.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.108-111
    • /
    • 2002
  • CIGS film has been fabricated on soda-lime glass, which is coated with Mo film. by multi-source evaporation process. The films has been prepared with thickness of 1.0 ${\mu}m$, 1.75${\mu}m$, 2.0${\mu}m$, 2.3${\mu}m$, and 3.0${\mu}m$. X-ray diffraction analysis with film thickness shows that CIGS films exhibit a strong (112) preferred orientation. Furthermore. CIGS films exhibited distinctly decreasing the full width of half-maximum and (112) preferred peak with film thickness. Also, The film's microstructure, such as the preferred orientation, the full width at half-maximum(FWHM), and the interplanar spacing were examined by X-ray diffraction. The preparation condition and the characteristics of the unit layers were as followings ; Mo back contact DC sputter, CIGS absorber layer : three-stage coevaporation, CdS buffer layer : chemical bath deposition, ZnO window layer : RF sputtering, $MgF_2$ antireflectance : E-gun evaporation

  • PDF

KF Post Deposition Treatment Process of Cu(In,Ga)Se2 Thin Film Effect of the Na Element Present in the Solar Cell Performance (KF 후열처리 공정시 CIGS 박막의 Na 원소 존재가 태양전지 셀성능에 미치는 영향)

  • Son, Yu-Seung;Kim, Won Mok;Park, Jong-Keuk;Jeong, Jeung-hyun
    • Current Photovoltaic Research
    • /
    • v.3 no.4
    • /
    • pp.130-134
    • /
    • 2015
  • The high efficiency cell research processes through the KF post deposition treatment (PDT) of the $Cu(In,Ga)Se_2(CIGS)$ thin film has been very actively progress. In this study, it CIGS thin film deposition process when KF PDT 300 to the processing temperature, 350, $400^{\circ}C$ changed to soda-lime glass (SLG) efficiency of the CIGS thin film characteristics, and solar cell according to Na presence of diffusion from the substrate the effects were analyzed. As a result, the lower the temperature of KF PDT and serves to interrupt the flow of current K-CIGS layer is not removed from the reaction surface, FF and photocurrent is decreased significantly. Blocking of the Na diffusion from the glass substrate is significantly increased while the optical voltage, photocurrent and FF is a low temperature (300, $350^{\circ}C$) in the greatly reduced, and in $400^{\circ}C$ tend to reduce fine. It is the presence of Na in CIGS thin film by electron-induced degradation of the microstructure of CIGS thin film is expected to have a significant impact on increasing the hole recombination rate a reaction layer is formed of the K elements in the CIGS thin film surface.

Improvement of Efficiency of Cu(Inx,Ga1-x)Se2 Thin Film Solar Cell by Enhanced Transparent Conductive Oxide Films (투명 전도막 개선을 통한 Cu(Inx,Ga1-x)Se2 박막태양전지 효율 향상에 관한 연구)

  • Kim, Kilim;Son, Kyeongtae;Kim, Minyoung;Shin, Junchul;Jo, Sunghee;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.203-208
    • /
    • 2014
  • In this study, Sputtering method was used to grow Al-dopes ZnO films on a CIGS absorber layer, in order to examine the effect of TCO on properties of CIGS solar cell devices. Structural, electrical and optical properties were investigated by varied thickness of Al-dopes ZnO films. Also, relation to the application as a window layer in CIGS thin film solar cell were studied. It was found that the electrical and structural properties of ZnO:Al film improved with increasing its thickness. However, the optical properties degraded. Jsc of the fabricated CIGS based solar cells was significantly influenced by the variation of the ZnO:Al window layer thickness. Because ZnO:Al window layer is one of the Rs factors in CIGS solar cell. Rs has the biggest influence on efficiency characteristic. In order to obtain high efficiency of CIGS solar cell, ZnO:Al window layer should be fabricated with electrically and optically optimized.

Effect of the Substrate Temperature on the Characteristics of CIGS Thin Films by RF Magnetron Sputtering Using a $Cu(In_{1-x}Ga_x)Se_2$ Single Target

  • Jung, Sung-Hee;Kong, Seon-Mi;Fan, Rong;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.382-382
    • /
    • 2012
  • CIGS thin films have received great attention as a promising material for solar cells due to their high absorption coefficient, appropriate bandgap, long-term stability, and low cost production. CIGS thin films are deposited by various methods such as co-evaporation, sputtering, spray pyrolysis and electro-deposition. The deposition technique is one of the most important processes in preparing CIGS thin film solar cells. Among these methods, co-evaporation is one of the best technique for obtaining high quality and stoichiometric CIGS films. However, co-evaporation method is known to be unsuitable for commercialization. The sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have prepared by rf magnetron sputtering using a $Cu(In_{1-x}Ga_x)Se_2$ single quaternary target without post deposition selenization. This process has been examined by the effects of deposition parameters on the structural and compositional properties of the films. In addition, we will explore the influences of substrate temperature and additional annealing treatment after deposition on the characteristics of CIGS thin films. The thickness of CIGS films will be measured by Tencor-P1 profiler. The crystalline properties and surface morphology of the films will be analyzed using X-ray diffraction and scanning electron microscopy, respectively. The optical properties of the films will be determined by UV-Visible spectroscopy. Electrical properties of the films will be measured using van der Pauw geometry and Hall effect measurement at room temperature using indium ohmic contacts.

  • PDF