DOI QR코드

DOI QR Code

Analysis of the Current-voltage Curves of a Cu(In,Ga)Se2 Thin-film Solar Cell Measured at Different Irradiation Conditions

  • Lee, Kyu-Seok (Thin Film Photovoltaic Technology Research Team, Electronics and Telecommunications Research Institute) ;
  • Chung, Yong-Duck (Thin Film Photovoltaic Technology Research Team, Electronics and Telecommunications Research Institute) ;
  • Park, Nae-Man (Thin Film Photovoltaic Technology Research Team, Electronics and Telecommunications Research Institute) ;
  • Cho, Dae-Hyung (Thin Film Photovoltaic Technology Research Team, Electronics and Telecommunications Research Institute) ;
  • Kim, Kyung-Hyun (Thin Film Photovoltaic Technology Research Team, Electronics and Telecommunications Research Institute) ;
  • Kim, Je-Ha (Thin Film Photovoltaic Technology Research Team, Electronics and Telecommunications Research Institute) ;
  • Kim, Seong-Jun (Nano Electronics Engineering Part, University of Science and Technology) ;
  • Kim, Yeong-Ho (Nano Electronics Engineering Part, University of Science and Technology) ;
  • Noh, Sam-Kyu (Nano Electronics Engineering Part, University of Science and Technology)
  • 투고 : 2010.10.13
  • 심사 : 2010.11.19
  • 발행 : 2010.12.25

초록

We analyze the current density - voltage (J - V) curve of a Cu(In,Ga)$Se_2$ (CIGS) thin-film solar cell measured at different irradiation power densities. For the solar-cell sample investigated in this study, the fill factor and power conversion efficiency decreased as the irradiation power density (IPD) increased in the range of 2 to 5 sun. Characteristic parameters of solar cell including the series resistance ($r_s$), the shunt resistance ($r_{sh}$), the photocurrent density ($J_L$), the saturation current density ($J_s$) of an ideal diode, and the coefficient ($C_s$) of the diode current due to electron-hole recombination via ionized traps at the p-n interface are determined from a theoretical fit to the experimental data of the J - V curve using a two-diode model. As IPD increased, both $r_s$ and $r_{sh}$ decreased, but $C_s$ increased.

키워드

참고문헌

  1. M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi, “Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells,” Prog. Photovolt: Res. Appl. 7, 311-316 (1999). https://doi.org/10.1002/(SICI)1099-159X(199907/08)7:4<311::AID-PIP274>3.0.CO;2-G
  2. I. Repins, M. A. Contreras, B. Egaas, C. Dehart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Prog. Photovolt: Res. Appl. 16, 235-239 (2008). https://doi.org/10.1002/pip.822
  3. M. Kemell, M. Ritala, and M. Leskela, “Thin film deposition methods for $CuInSe_2$ solar cells,” Critical Rev. Sol. St. & Mat. Sci. 30, 1-31 (2005). https://doi.org/10.1080/10408430590918341
  4. T. Todorov and D. B. Mitzi, “Direct liquid coating of chalcopyrite light-absorbing layers for photovoltaic devices,” Eur. J. Inorg. Chem. 1, 17-28 (2010).
  5. Y.-D. Chung, D.-H. Cho, W.-S. Han, N.-M. Park, K.-S. Lee, and J. Kim, “Incorporation of Cu in $Cu(In,Ga)Se_2$-based thin-film solar cells,” J. Korean Phys. Soc. 57, 1826-1830 (2010). https://doi.org/10.3938/jkps.57.1826
  6. S. C. Kim and I. Sohn, “Simulation of energy conversion efficiency of a solar cell with gratings,” J. Opt. Soc. Korea 14, 142-145 (2010). https://doi.org/10.3807/JOSK.2010.14.2.142
  7. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (John Wiley & Son, New York, USA, 1981).
  8. D. S. H. Chan and J. C. H. Phang, “Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics,” IEEE Trans. Elec. Dev. 34, 289-293 (1983).
  9. S. S. Hegedus and W. N. Shafarman, “Thin-film solar cells: device measurements and analysis,” Prog. Photovolt: Res. Appl. 12, 155-176 (2004). https://doi.org/10.1002/pip.518
  10. A. Virtuani, E. Lotter, and M. Powalla, “Performance of Cu(In,Ga)Se2 solar cells under low irradiance,” Thin Solid Films 431-432, 443-447 (2003). https://doi.org/10.1016/S0040-6090(03)00184-6
  11. Y. D. Chung, W. S. Han, S. B. Bae, N. M. Park, D. H. Cho, K. S. Lee, S. Y. Oh, and J. Kim, “Fabrication and characterization of $Cu(In,Ga)Se_2$ thin-film solar cell minimodules,” in Proc. 19th International Photovoltaic Science and Engineering Conference (PVSEC19) (International Convention Center, Jeju, Korea, 2009), p. 262.
  12. M. J. Grigg, B. M. Kayes, and H. A. Atwater, “P-n junction heterostructure device physics model of a four junction solar cell,” Proc. SPIE 6339, 63390D (2006).

피인용 문헌

  1. Photovoltaic Characteristics of Low-density Concentration GaAs Solar Cells with/without Anti-reflective Coating vol.23, pp.1, 2014, https://doi.org/10.5757/ASCT.2014.23.1.27
  2. Flower like Buffer Layer to Improve Efficiency of Submicron-Thick CuIn&lt;sub&gt;1-x&lt;/sub&gt;Ga&lt;sub&gt;x&lt;/sub&gt;Se&lt;sub&gt;2&lt;/sub&gt; Solar Cells vol.37, pp.6, 2015, https://doi.org/10.4218/etrij.15.0115.0114
  3. Non-toxically enhanced sulfur reaction for formation of chalcogenide thin films using a thermal cracker vol.2, pp.35, 2014, https://doi.org/10.1039/C4TA02507E
  4. Influence of Carrier Trap in InAs/GaAs Quantum-Dot Solar Cells vol.22, pp.1, 2013, https://doi.org/10.5757/JKVS.2013.22.1.37
  5. Equivalent Circuit Model for Cu(In,Ga)Se2 Solar Cells Operating at Different Temperatures and Irradiance vol.7, pp.11, 2018, https://doi.org/10.3390/electronics7110324