• Title/Summary/Keyword: Cu(Ag) alloy

Search Result 171, Processing Time 0.025 seconds

A STUDY ON THE MICROSTRUCTURES OF THE AMALGAM ALLOYS AND AMALGAMS (치과용 아말감합금 및 아말감의 마세구조에 관한 연구)

  • Yeon, Sang-Heum;Lee, Chung-Sik;Lee, Myung-Jong;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.87-105
    • /
    • 1996
  • The purpose of this study is to investigate the characteristics of the compositions and phases of amalgam alloys and amalgams by using EMPA and X-ray diffractometer. Each specimen was made from Caulk Fine Cut Clow copper lathe cut amalgam), Caulk Spherical (low copper spherical amalgam), Tytin (high copper unicorn position amalgam), Dispersally (high copper admixed amalgam) and Valiant (Palladium enriched amalgam). For preparing amalgam alloys, Tytin and Valiant were used as powder forms and the others were used as tablet forms after being polished with polishing machine. For preparing amalgams, each amalgam alloy and Hg were measured, and triturated by mechanical amalgamater according to user's instructions. After triturating, the triturated mass was inserted to cylindrical metal mold and simultaneously adapted by cylindrical condenser with same diameter and condensed by Instron universal testing machine with 80kg pressure & 1mm/min speed. Each specimen was removed from the metal mold and stored at room temperature for a week. The specimen was polished with the same polishing machine for amalgam alloy. For observation of microstructure and analysis of composition of amalgam alloys and amalgams, EMPA was used to get secondary electron images, backscattered images and characteristic X-ray images of Ag, Sn, Cu, Zn, Hg. To analyze compositions of amalgam alloys and amalgams, X-ray diffractometer was used. Amalgam alloys were scanned at the range of 2${\theta}$ of 30-$85^{\circ}$ and the speed of $4^{\circ}$/min with Cuka line and amalgams were scanned at the range of 2${\theta}$ of 28-$44^{\circ}$ and the speed of $4^{\circ}$/min with Cuka line. By comparing obtained d(distance between surfaces) and d of expected phases and atoms in amalgam alloys and amalgams in ASTM card, phases and atoms were identified. The results were as follows, 1. In Caulk Fine Cut amalgam alloy typical ${\gamma}$ phase was shown, and in amalgam, ${\gamma}$, ${\gamma}_1$ and ${\gamma}_2$ phases were observed. 2. In Caulk Spherical amalgam alloy ${\gamma}$, Ag, Cu and $\varepsilon$ phases were shown, and in amalgam ${\gamma}$, ${\gamma}_1$, ${\gamma}_2$ and $\eta$ phases were observed. 3. In Tytin amalgam alloy ${\gamma}$, Cu and $\varepsilon$ phases were shown, and in amalgam ${\gamma}$, ${\gamma}_1$, $\eta$ and $\varepsilon$ phases were observed. 4. In Dispersalloy ${\gamma}$, Ag, Cu and $\varepsilon$ phases were shown, and in amalgam ${\gamma}$, ${\gamma}_1$, $\eta$ and $\varepsilon$ phases were observed. 5. In Valiant alloy ${\gamma}$, Cu and e phases were shown, and in amalgam ${\gamma}$, ${\gamma}_1$, $\eta$ and $\varepsilon$ phases were observed.

  • PDF

Variation in the Kind of Formed Superconducting Oxide and Microstructure with Heat-Treatment Temperature in Yb-Ba-Cu-Ag Ribbons (Yb-Ba-Cu-Ag 리본의 열처리 온도에 따라 형성된 초전도 산화물의 종류와 미세구조의 변화)

  • 송명엽
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.1
    • /
    • pp.79-87
    • /
    • 1998
  • Melt spun YbBa2Cu3Agx(x=0, 5, 12, 16 and 53) precursor alloy ribbons were oxidized at 263-330$^{\circ}C$ and treated at 820$^{\circ}C$, 855$^{\circ}C$ and 885$^{\circ}C$ under 1.0 atm oxygen pressure. In the ribbons treated at 820$^{\circ}C$, 855$^{\circ}C$and 885$^{\circ}C$ 1-2-4 phase (YbBa2Cu4O8) and 1-2-3 phase (YbBa2Cu3O{{{{ OMICRON _7-$\delta$ }})were formed respectively. The shape of 1-2-4 phase was distorted or ellipsoid. The 2-4-7 and 1-2-3 phases tooked the shape of bar. All the ribbons showed zero critical current density Jc at 77K in zero magnetic field. By considering the shape and the highest critical temperature (among the three phases) of the 1-2-3 phase we tried to increase the critical current density of the ribbons treated at 885$^{\circ}C$ by press deformation. About tenribbons were stacked and coupled by press deformation and then treated at 885$^{\circ}C$ These 1-2-3 phase did not show any texture in any of the ribbons. However they exhibited weak texture in the multilayered specimens. Among the multilayered specimens YbBa2Cu3Ag16 exhibited a Jc of 180 A/cm2 Among the above ribbons YbBa2Cu3Ag16 ribbon has the optimum composition to produce textured superconducting oxide with improved Jc by press deformation. Onset critical temperatures Ton of the multilayered YbBa2Cu3Agx(x=5, 12, 16 and 53) were measured as 88-90 K.

  • PDF

Fabrication, Microstructure and Adhesion Properties of BCuP-5 Filler Metal/Ag Plate Clad Material by Using High Velocity Oxygen Fuel Thermal Spray Process (고속 화염 용사 공정을 이용한 스위칭 소자용 BCuP-5 filler 금속/Ag 기판 클래드 소재의 제조, 미세조직 및 접합 특성)

  • Joo, Yeun A;Cho, Yong-Hoon;Park, Jae-Sung;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.226-232
    • /
    • 2022
  • In this study, a new manufacturing process for a multilayer-clad electrical contact material is suggested. A thin and dense BCuP-5 (Cu-15Ag-5P filler metal) coating layer is fabricated on a Ag plate using a high-velocity oxygen-fuel (HVOF) process. Subsequently, the microstructure and bonding properties of the HVOF BCuP-5 coating layer are evaluated. The thickness of the HVOF BCuP-5 coating layer is determined as 34.8 ㎛, and the surface fluctuation is measured as approximately 3.2 ㎛. The microstructure of the coating layer is composed of Cu, Ag, and Cu-Ag-Cu3P ternary eutectic phases, similar to the initial BCuP-5 powder feedstock. The average hardness of the coating layer is 154.6 HV, which is confirmed to be higher than that of the conventional BCuP-5 alloy. The pull-off strength of the Ag/BCup-5 layer is determined as 21.6 MPa. Thus, the possibility of manufacturing a multilayer-clad electrical contact material using the HVOF process is also discussed.

Study on the Prediction of Fatigue Life of BGA Typed Solder Joints (BGA 형태 솔더 접합부의 피로 수명 예측에 관한 연구)

  • Kim, Seong-Keol;Kim, Joo-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.137-143
    • /
    • 2008
  • Thermal fatigue life prediction for solder joints becomes the most critical issue in present microelectronic packaging industry. And lead-free solder is quickly becoming a reality in electronic manufacturing fields. This trend requires life prediction models for new solder alloy systems. This paper describes the life prediction models for SnAgCu and SnPb solder joints, based upon non-linear finite element analysis (FEA). In case of analyses of the SnAgCu solder joints, two kinds of shapes are used. As a result, it is found that the SnAgCu solder has longer fatigue life than the SnPb solder in temperature cycling analyses.

Development of Copper Cored Solder Ball(CCSB) by Sn-Ag-Cu Alloy Plating Process

  • Lee, Deok-Haeng;Jeong, Un-Seok;Kim, Jong-Uk;Kim, Pan-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.284-284
    • /
    • 2015
  • 반도체 Ball Grid Array(BGA)에 사용되던 종래의 Solder Ball은 Sn96.3 Ag3.0 Cu0.7의 용융솔더를 이용하여 제작하고 있다. 이는 SMT Reflow공정에서 BGA Ball의 퍼짐현상으로 인해 원래의 Ball Height에 영향을 미쳐 접합불량의 원인이 되고 있다. 이러한 문제를 해결하기 위해 Copper Core Ball위에 SnAgCu 삼원합금도금공정을 이용해 문제점을 해결하고자 했으며, 본 실험을 통해 구현한 CCSB를 이용해 SMT Reflow를 진행한 결과 종래의 BGA Ball보다 우수한 효과를 확인할 수 있었다.

  • PDF

BRAZEABILITY AND MICROSTRUCTURE OF Ag-28Cu MICROJOINING FILLER PRODUCED BY HIGH ENERGY BALL MILLING

  • ASHUTOSH SHARMA;MYOUNG JIN CHAE;BYUNGMIN AHN
    • Archives of Metallurgy and Materials
    • /
    • v.65 no.4
    • /
    • pp.1323-1327
    • /
    • 2020
  • In this paper, we have studied the evolution of morphology and brazing behavior of Ag-28Cu alloy filler processed by high energy ball milling. The milling of the powder mixture was carried out for 40 h. The structural and morphological analyses were performed by the X-ray diffraction and scanning electron microscopy. The melting temperature of the braze filler was determined by differential thermal analysis. The filler wetting properties were assessed from the spread area ratio measurements on various Ti substrates. The results indicate that the ball milling can effectively depress the filler melting point and enhance the brazeability. The milled powder mixture showed Ag(Cu) solid solution with a crystallite size of 174-68 nm after 40 h. It was shown that the high energy ball milling can be a potential method to develop low temperature brazing fillers for advanced microjoining applications.

The Effects of Ag Addition on the Structure and Mechanical Properties of Aluinium Lithium Alloys (알루미튬 리튬합금의 조직 및 기계적 성질에 미치는 Ag첨가의 영향)

  • Sin, Hyeon-Sik;Jeong, Yeong-Hun;Sin, Myeong-Cheol;Jang, Hyeon-Gu
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.556-565
    • /
    • 1994
  • Effects of Ag addition to 2090 and CP 276 Al-Li alloy systems on the microstructure and mechanical properties have been investigated. The addition of silver up to 0.16wt.% reduced the grain size of the alloys, and was responsible for the formation of finer and more uniform $\delta$'($AI_{3}Li$) and $T_{1}(AI_{2}CuLi$) precipitates in 2090 alloys, even though no variation of precipitates was found in CP 276 alloys. The addition of 0.16wt.% Ag improved the tensile strength of 2090 alloys about 40MPa with the expense of small reduction of percent elongation. However, the small addition of Ag to CP 276 containing Mg did not show any variation of tensile strength and elongation. The aging treatment of these alloys at $150^{\circ}C$ for 70 or 90 hours, depending on alloy systems, showed peak hardness value of about 92 $H_rB$.

  • PDF

A Study on Mechanical Properties for Pb-free Solders of Electronic Packages (전자부품의 Pb-free 솔더에 대한 기계적 특성에 관한 연구)

  • 허우진;백승세;정영훈;권일현;양성모;유효선
    • Proceedings of the KWS Conference
    • /
    • 2003.11a
    • /
    • pp.83-85
    • /
    • 2003
  • This paper is investigated the shear strength by using the micro shear-punch test method for Sn-37Pb alloy, binary and ternary alloys of environment-friendly Pb-free solder alloys which would be surely applicable to the electronic packages. As a result, in case of Max. shear strength, Sn-4Ag-0.5Cu has the highest value and Sn-37Pb has the lowest value on every condition of experiment temperature. Also, In case of Pb-free solder joint specimens, it was found that Pb-free solder alloys have higher value of shear strength than eutectic Sn-Pb solder alloy and Sn-4Ag-0.5Cu has the highest value.

  • PDF

Impact Resistance Reliability of Sn-1.2Ag-0.5Cu-0.4In Solder Joints (Sn-1.2Ag-0.5Cu-0.4In 조성 솔더 접합부의 내 충격 신뢰성 평가)

  • Yu, A-Mi;Lee, Chang-Woo;Kim, Jeong-Han;Kim, Mok-Soon;Lee, Jong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.226-226
    • /
    • 2008
  • 지난 10여년 동안 Sn-3.0Ag-0.5(wt%)Cu 합금은 대표 무연솔더 조성으로 다양한 전자제품의 실장 및 접합에 적용되어 왔으며, 그 신뢰성 역시 충분히 검증된 바 있다. 그러나 최근 Ag 가격의 급격한 상승과 솔더 접합부의 내 충격 신뢰성을 보다 향상시키고자 하는 업계의 동향은 Ag의 함량이 낮은 무연솔더 조성의 적용 확대를 유도하고 있다. 이에 따라 본 연구자들은 저 Ag 함유 무연슬더로 Sn-1.2Ag-0.5Cu-0.4In 조성을 제안한 바 있는데, 이는 Sn-3.0Ag-0.5Cu 조성 이상의 solderability를 가지면서도 그 금속원료 가격이 약 20% 가량 저렴한 특징을 가진다. 또한 열 싸이클링 (cycling) 테스트를 통한 슬더 조인트의 신뢰성을 평가한 결과, Sn-3.0Ag-0.5Cu에 크게 뒤떨어지지 않는 양호한 특성이 관찰되었다. 따라서 본 연구에서는 열 싸이클링 테스트와 더불어 최근 그 중요성이 지속적으로 커지고 있는 내 충격 신뢰성 평가 시험을 실시하여 개발된 4원계 무연솔더 조성의 기계적 특성을 기존 무연솔더 조성과 비교, 분석해 보았다. 각 솔더 조성은 솔더 볼 형태로 제조되어 CSP(Chip Scale Package) 상에 범핑 (bumping)되었으며, CSP를 PCB(Printed Circuit Board) 상에 실장하는 공정에서도 Sn-3.0Ag-0.5Cu 및 Sn-1.2Ag-0.5Cu-0.4In의 두 종류의 솔더 페이스트가 사용되었다. 본 연구에서의 내 충격 신뢰성 시험에는 자체 제작한 rod drop 시험기를 사용하였는데, 고정된 CSP 실장 board의 후면 부위를 일정한 높이에서 추를 반복적으로 자유 낙하시켜 급격한 충격을 주는 방식으로 실험을 실시하였다. 이 때 추의 무게는 30g, 낙하 높이는 10cm 였으며, 추의 낙하 시 측정된 board 의 휨 변위량은 약 0.7mm로 측정되었다. 사용된 CSP와 PCB 는 모두 daisy chain 방식으로 연결되어 있기 때문에 저항측정기를 사용한 간단한 실시간 저항 측정 방법으로 시험 이력에 따른 파단부의 발생 시점과 대략의 위치를 손쉽게 확인할 수 있었다. 솔더 조인트의 파단 기준 저항값으로 $1000\Omega$을 설정하였으며. 각 조건 당 5 개 이상의 샘플에 대해 평가를 실시한 후 그 평균값을 조사하였다. 시험 결과 제안된 Sn-1.2Ag-0.5Cu-0.4In 조성은 대표적인 저 Ag 함유 조성인 Sn-1.0Ag-0.5Cu에 비해서는 떨어지는 내 충격 신뢰성을 나타내었지만, 우수한 연성에 기인하여 Sn-3.0Ag-0.5Cu 조성에 비해서는 약 2 배 이상 우수한 신뢰성이 관찰되었다. 또한 CSP의 실장 시 Sn-3.0Ag-0.5Cu보다 Sn-1.2Ag-0.5Cu-0.4In 조성 솔더 페이스트를 적용한 경우에서 보다 우수한 내 충격 신뢰성을 나타내어 기본적으로 개발된 Sn-1.2Ag-0.5Cu-0.4In 솔더 페이스트가 Sn-3.0Ag-0.5Cu 조성의 기존 솔더 페이스트 보다 내 충격 신뢰성이 우수함을 검증할 수 있었다. 각 조성의 솔더 조인트를 $150^{\circ}C$ 에서 500시간 aging한 후 실시한 내 충격 신뢰성 평가에서는 모든 조성에서 그 신뢰성이 급감하는 경항을 나타내었으나, Sn-1.2Ag-0.5Cu-0.4In가 Sn-l.0Ag-0.5Cu보다도 그 상대적인 신뢰성이 우수한 것으로 관찰되었다. 이와 같이 aging 후 실시하는 충격시험은 가장 실제적인 상황과 유사한 조건이므로 상기의 실험 결과는 매우 고무적이었으며, 이에 대한 보다 면밀한 분석이 요청되었다. 마지막으로 파면 및 미세조직 관찰을 통하여 각 조성에서의 충격 파단 특성을 비교, 분석해 보았다.

  • PDF

Effect of Post Heat Treatment on the Microstructure and Mechanical Properties of BCuP-5 Filler Metal Coating Layers Fabricated by High Velocity Oxygen Fuel Thermal Spray Process on Ag Substrate (고속 화염 용사 공정으로 제조된 BCuP-5 필러 금속 코팅층/Ag 기판 클래드 소재의 후열처리에 따른 미세조직 및 기계적 특성 변화)

  • Park, So-Yeon;Youn, Seong-June;Park, Jae-Sung;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.29 no.4
    • /
    • pp.283-290
    • /
    • 2022
  • A Cu-15Ag-5P filler metal (BCuP-5) is fabricated on a Ag substrate using a high-velocity oxygen fuel (HVOF) thermal spray process, followed by post-heat treatment (300℃ for 1 h and 400℃ for 1 h) of the HVOF coating layers to control its microstructure and mechanical properties. Additionally, the microstructure and mechanical properties are evaluated according to the post-heat treatment conditions. The porosity of the heat-treated coating layers are significantly reduced to less than half those of the as-sprayed coating layer, and the pore shape changes to a spherical shape. The constituent phases of the coating layers are Cu, Ag, and Cu-Ag-Cu3P eutectic, which is identical to the initial powder feedstock. A more uniform microstructure is obtained as the heat-treatment temperature increases. The hardness of the coating layer is 154.6 Hv (as-sprayed), 161.2 Hv (300℃ for 1 h), and 167.0 Hv (400℃ for 1 h), which increases with increasing heat-treatment temperature, and is 2.35 times higher than that of the conventional cast alloy. As a result of the pull-out test, loss or separation of the coating layer rarely occurs in the heat-treated coating layer.