Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.4.283

Effect of Post Heat Treatment on the Microstructure and Mechanical Properties of BCuP-5 Filler Metal Coating Layers Fabricated by High Velocity Oxygen Fuel Thermal Spray Process on Ag Substrate  

Park, So-Yeon (Department of Materials Science and Engineering, Inha University)
Youn, Seong-June (Department of Materials Science and Engineering, Inha University)
Park, Jae-Sung (LT Metal LTD.)
Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
Publication Information
Journal of Powder Materials / v.29, no.4, 2022 , pp. 283-290 More about this Journal
Abstract
A Cu-15Ag-5P filler metal (BCuP-5) is fabricated on a Ag substrate using a high-velocity oxygen fuel (HVOF) thermal spray process, followed by post-heat treatment (300℃ for 1 h and 400℃ for 1 h) of the HVOF coating layers to control its microstructure and mechanical properties. Additionally, the microstructure and mechanical properties are evaluated according to the post-heat treatment conditions. The porosity of the heat-treated coating layers are significantly reduced to less than half those of the as-sprayed coating layer, and the pore shape changes to a spherical shape. The constituent phases of the coating layers are Cu, Ag, and Cu-Ag-Cu3P eutectic, which is identical to the initial powder feedstock. A more uniform microstructure is obtained as the heat-treatment temperature increases. The hardness of the coating layer is 154.6 Hv (as-sprayed), 161.2 Hv (300℃ for 1 h), and 167.0 Hv (400℃ for 1 h), which increases with increasing heat-treatment temperature, and is 2.35 times higher than that of the conventional cast alloy. As a result of the pull-out test, loss or separation of the coating layer rarely occurs in the heat-treated coating layer.
Keywords
High Velocity Oxygen Fuel Spray; Switching Device; Cu-15Ag-5P (BCuP-5); Post Heat Treatment; Microstructure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. B. Karamis, A. Tasdemirci and F. Nair: J. Mater. Process. Tech., 141 (2003) 302.
2 J. H. Zhu and H. Ghezel-Ayagh: Int. J. Hydrog. Energy., 42 (2017) 24278.
3 Y. Zhang, B. Song, X. Zhao and Y. Shi: Nano Mater. Sci., 1 (2019) 208.
4 H. Yu, Y. Sun, S. P. Alpay and M. Aindow: J. Mater. Sci., 50 (2015) 324.
5 Y. Li, C. Wang, Z. Peng, J. Yan and X. Liu: Trans. Nonferrous Met. Soc. China, 21 (2011) s394.
6 J. Yu, X. Liu, Y. Yu, H. Li, P. Liu, K. Huang and R. Sun: Coat, 12 (2022) 828.
7 Y. A. Joo, Y. H. Cho, J. S. Park and K. A. Lee: J. Powder Mater., 29 (2022) 226.
8 D. W. Sul, B. H. Kim, Y. W. Rheem, M. S. Jeong and D. S. Suhr: Mater. Sci. Technol., 56 (2018) 113.
9 ASM Intl., Metals Handbook Vol. 8: Metallography, Structures and Phase Diagrams, ASM Intl., Ohio (1973) 435.
10 P. Bansal, P. H. Shipway and S. B. Leen: J. Therm. Spray Technol., 15 (2006) 570.
11 G. Ynag, X. Fu and J. Zhou: Opt. Soc. Am. B, 30 (2013) 282.
12 C. J. Kong, P. D. Brown, S. J. Harris and D. G. McCartney: Mater. Sci. Eng. A, 403 (2005) 205.
13 I. Yamauchi, N. Veno, M. Shimaoka and I. Ohnaka: J. Mater. Sci., 33 (1998) 371.
14 G. Radnoczi, E. Bokanyi, Z. Erdelyi and F. Misjaka: Acta Mater., 123 (2017) 82.
15 H. G. Scott: J. Mater. Sci., 10 (1975) 1527.
16 G. Straffelini and M. Federici: Coat., 10 (2020) 886.
17 P. Coddet, C. Verdy, C. Coddet and F. Debray: Mater. Sci. Eng. A, 637 (2015) 40.
18 H. G. Kang, Y. S. Kang and J. S. Lee: J. Powder Mater., 13 (2006) 18.
19 F. Findik and H. Uzun: Mater. Des., 24 (2003) 489.
20 H. J. Kim: Korea, KR No. 1019970035472 (1997).
21 Y. Lu, R. Ma and Y. Wang: Mater. Sci. Technol., 34 (2018) 862.
22 D. Janovszky, K. Tomolya, A. Sycheva, P. Pekker and A.Roosz: J. Alloys Compd., 586 (2014) S194.
23 S. Itoh, K. Hokamoto and M. Fujita: MSF, 465-466 (2004) 427.
24 D. Zhang, D. G. McCartney and S. J. Harris: Mater. Sci. Eng. A, 344 (2003) 45.
25 S. J. Harris, D. G. McCartney, A. J. Horlock and C. Perrin: Mater. Sci. Forum, 331-337 (2000) 519.