• Title/Summary/Keyword: Cross-pressure

Search Result 1,449, Processing Time 0.026 seconds

Optimal Design of a Flextensional Transducer Considering All the Cross-coupled Effects of the Design Variables (설계변수들의 상호효과를 고려한 Flextensional 트랜스듀서의 최적설계)

  • 강국진;노용래
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.364-374
    • /
    • 2003
  • The performance of an acoustic transducer is determined by the effects of many design variables. and mostly the influences of these design variables are not linearly independent of each other To achieve the optimal performance of an acoustic transducer, we must consider the cross-coupled effects of the design variables. In this study with the FEM. we analyzed the variation of the resonance frequency and sound pressure of a flextensional transducer in relation to Its design variables. Through statistical multiple regression analysis of the results, we derived functional forms of the resonance frequency and sound pressure in terms of the design variables, and with which we determined the optimal structure of the transducer by means of a constrained optimization technique, SQP-PD. The proposed method can reflect all the cross-coupled effects of multiple design variables, and can be utilized to the design of general acoustic transducers.

Temperature-dependent studies on catalytic hydrosilation of polyalkylsiloxane using NMR

  • Sul, Hyewon;Lee, Tae Hee;Lim, Eunsoo;Rho, Yecheol;Kim, Chong-Hyeak;Kim, Jeongkwon
    • Analytical Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.213-219
    • /
    • 2017
  • Polyalkylsiloxane has been spotlighted in pressure-sensitive adhesive (PSA) application due to excellent physical properties and good biocompatibility. Thermal behaviour of polyalkylsiloxane mixtures, such as thermal stability and heat flow, were studied using TG-DTA during catalytic hydrosilation. To understand reaction kinetics of cross-linking, catalytic hydrosilation of polyalkylsiloxane was monitored using variable temperature nuclear magnetic resonance (VT-NMR) as increased temperature. The formation of cross-linking bond $Si-CH_2-CH_2-Si$ was directly observed using distortionless enhanced by polarization transfer (DEPT) technique. Successfully polyalkylsiloxane PSA samples exhibited excellent adhesion properties by cross-linking reaction.

Analysis on Performance and Noise Characteristics of the Design Parameters of a Cross-Flow Fan and its Optimization (횡류홴 설계 인자들의 성능/소음 특성 해석 및 최적화)

  • Cho Yong;Moon Young J.;Kwak Jiho
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.767-770
    • /
    • 2002
  • The performance and noise characteristics of the design parameters of a cross-flow fan are investigated by computational methods. The incompressible Wavier-Stokes equations in moving coordinates are time-accurately solved for obtaining the pressure fluctuations due to the aerodynamic interactions between the impeller blades and the stabilizer, and sound pressure is then computed by the Ffowcs Williams-Hawkings equation. Design parameters of the cross-flow fan include blade setting angle, exit-diffusion angle, and stabilizer installation angle. Also, an optimization of the aforementioned design parameters has been peformed using the Taguchi method.

  • PDF

Heat Transfer Coefficient and Shear Factor Subjected to Both Oscillating Flow and Oscillating Pressure in Pulse Tubes (주기적인 유동과 압력의 변화를 수반하는 맥동관의 열전달계수와 전단계수)

  • Jeong, Eun-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.220-227
    • /
    • 2007
  • Heat transfer and momentum transfer under conditions of both oscillating flow and oscillating pressure within pulse tubes show very different behavior from those for steady state conditions. The analytic solutions of axial velocity and temperature of the gas within pulse tubes were obtained by assuming that the variations in pressure and temperature were purely sinusoidal and small. The shear stress and the heat flux at the tube wall obtained from the solutions are expressed in terms of the cross-sectional averaged velocity, the difference between mean temperature and instantaneous cross-sectional averaged temperature and the difference between mean pressure and instantaneous pressure. It is shown that the complex shear factor, which has been applied to momentum transfer of incompressible oscillating flow, and the complex Nusselt number, which has been applied to either heat transfer with oscillating pressure only or heat transfer of incompressible oscillating flow, could also be used for momentum transfer and heat transfer subjected to both oscillating flow and oscillating pressure, respectively.

Pressure Measurement in Carpal Tunnel Syndrome : Correlation with Electrodiagnostic and Ultrasonographic Findings

  • Ahn, Seong-Yeol;Hong, Youn-Ho;Koh, Young-Hwan;Chung, Yeong-Seob;Lee, Sang-Hyung;Yang, Hee-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.3
    • /
    • pp.199-204
    • /
    • 2009
  • Objective : This study was done to evaluate the correlation between carpal tunnel pressure (CTP), electrodiagnostic and ultrasonographic findings in patients with carpal tunnel syndrome (CTS). Methods : CTP was measured during endoscopic carpal tunnel release (ECTR) for CTS using Spiegelberg ICP monitoring device with parenchymal type catheter. Neurophysiologic severity and nerve cross sectional area were evaluated using nerve conductive study and ultrasonography (USG) before ECTR in all patients. Results : Tests were performed in a total of 48 wrists in 39 patients (9 cases bilateral). Maximum CTP was $56.7{\pm}19.3$ mmHg ($Mean{\pm}SD$) and $7.4{\pm}3.3$ mmHg before and after ECTR, respectively. No correlation was found between maximum CTP and either neurophysiologic severity or nerve cross sectional area, whereas we found a significant correlation between the latter two parameters. Conclusion : CTP was not correlated with neurophysiologic severity and nerve cross sectional area. Dynamic, rather than static, pressure in carpal tunnel might account for the basic pathophysiology of CTS better.

Study of Optical Tomography for Measurement of Spray Characteristics at High Ambient Pressure (고압 환경에서의 분무 특성 계측을 위한 광학 토모그래피 기법 연구)

  • Cho, Seong-Ho;Im, Ji-Hyuk;Choi, Ho-Yeon;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.36-44
    • /
    • 2009
  • Spray cross-section was measured by the Optical Line Patternator (OLP) and Optical Tomography at high ambient pressure. The laser line beam passed through the spray region, then Mie scattered signal and transmitted light were captured. The measured signal was processed to obtain a distribution of attenuation coefficient in spray cross-section. Beer-Lambert's law and mathematical reconstruction methods were used to reconstruct the distribution of attenuation coefficient. Spray became dense at high pressure and attenuation of scattered signal occurred seriously. OLP method, which uses Mie scattered signal, showed limit in compensating attenuation problem in dense spray region. Optical tomography reconstructed spray cross-section well, from transmission rate of light penetrating spray region.

Ramifications of Structural Deformations on Collapse Loads of Critically Cracked Pipe Bends Under In-Plane Bending and Internal Pressure

  • Sasidharan, Sumesh;Arunachalam, Veerappan;Subramaniam, Shanmugam
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.254-266
    • /
    • 2017
  • Finite-element analysis based on elastic-perfectly plastic material was conducted to examine the influence of structural deformations on collapse loads of circumferential through-wall critically cracked $90^{\circ}$ pipe bends undergoing in-plane closing bending and internal pressure. The critical crack is defined for a through-wall circumferential crack at the extrados with a subtended angle below which there is no weakening effect on collapse moment of elbows subjected to in-plane closing bending. Elliptical and semioval cross sections were postulated at the bend regions and compared. Twice-elastic-slope method was utilized to obtain the collapse loads. Structural deformations, namely, ovality and thinning, were each varied from 0% to 20% in steps of 5% and the normalized internal pressure was varied from 0.2 to 0.6. Results indicate that elliptic cross sections were suitable for pipe ratios 5 and 10, whereas for pipe ratio 20, semioval cross sections gave satisfactory solutions. The effect of ovality on collapse loads is significant, although it cancelled out at a certain value of applied internal pressure. Thinning had a negligible effect on collapse loads of bends with crack geometries considered.

Static displacement and elastic buckling characteristics of structural pipe-in-pipe cross-sections

  • Sato, M.;Patel, M.H.;Trarieux, F.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.3
    • /
    • pp.263-278
    • /
    • 2008
  • Structural pipe-in-pipe cross-sections have significant potential for application in offshore oil and gas production systems because of their property that combines insulation performance with structural strength in an integrated way. Such cross-sections comprise inner and outer thin walled pipes with the annulus between them fully filled by a selectable thick filler material to impart an appropriate combination of properties. Structural pipe-in-pipe cross-sections can exhibit several different collapse mechanisms and the basis of the preferential occurrence of one over others is of interest. This paper presents an elastic analyses of a structural pipe-in-pipe cross-section when subjected to external hydrostatic pressure. It formulates and solves the static and elastic buckling problem using the variational principle of minimum potential energy. The paper also investigates a simplified formulation of the problem where the outer pipe and its contact with the filler material is considered as a 'pipe on an elastic foundation'. Results are presented to show the variation of elastic buckling pressure with the relative elastic modulus of the filler and pipe materials, the filler thickness and the thicknesses of the inner and outer pipes. The range of applicability of the simplified 'pipe on an elastic foundation' analysis is also presented. A brief review of the types of materials that could be used as the filler is combined with the results of the analysis to draw conclusions about elastic buckling behaviour of structural pipe-in-pipe cross-sections.

Performance Characteristics of a Cross-Flow Fan with Various Impeller Outlet Angles and Rearguiders (임펠러 출구각 및 리어가이더 형상 변화에 따른 횡류홴의 성능 특성)

  • Kim, H.S.;Kim, D.W.;Yoon, T.S.;Park, S.K.;Kim, Youn-J.
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.851-856
    • /
    • 2003
  • A cross-flow fan consists of an impeller, a stabilizer and a rearguider. When it applied for an air conditioner, an evaporator should be added. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. Therefore, the performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, 15% by the heat exchanger. At the low flow rate, there are a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. Moreover, the reciprocal relation between the impeller and the flow passage is the important factor for performance improvement of the cross-flow tan because each parameter is independent. The performance characteristics in the cross-flow fan are graphically depicted with various impeller outlet angles and rearguiders.

  • PDF

Preparation and Characterization of Pore-filled Membrane Based on Polypropylene with Poly(vinylbenzyl chloride) by Using in-situ Cross-linking Technique

  • Kwon, Byeong-Min;Ko, Moon-Young;Hong, Byung-Pyo;Byun, Hong-Sik
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.13-19
    • /
    • 2008
  • Water softening is a very promising field for membranes and especially ultra low pressure membranes. Nanofiltration membranes based on pore-filling technology was prepared by using a new technique: the in-situ cross-linking. This route involves introducing a pre-formed polymer into the pores of a host membrane and then locking the polymer in the pores by in-situ cross-linking with an appropriate reagent. By this way, it is possible to make robust and competitive, pore-filled, anion-exchange membranes with excellent control over the properties of the incorporated gel without affecting the host membrane. In this paper, the possibilities of tuning such membranes for ultra low pressure water softening was examined by altering pore-filling chemistry (by changing cross-linking and aminating reagents). The results showed that tuning the chemistry of the pore-filling has important effects. In particularly, it had been shown that the correct selection of cross-linking reagent was not only essential to get pore-filled membranes but it could control their properties. Moreover, the aminating reagent could improve membrane performance. It was found that an increase in hydrophobicity could improve the Darcy permeability.