DOI QR코드

DOI QR Code

Temperature-dependent studies on catalytic hydrosilation of polyalkylsiloxane using NMR

  • Sul, Hyewon (Center for Chemical Analysis, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Tae Hee (Center for Chemical Analysis, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lim, Eunsoo (Center for Chemical Analysis, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Rho, Yecheol (Center for Chemical Analysis, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Chong-Hyeak (Center for Chemical Analysis, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Jeongkwon (Department of Chemistry, Chungnam National University)
  • Received : 2017.06.02
  • Accepted : 2017.08.09
  • Published : 2017.08.25

Abstract

Polyalkylsiloxane has been spotlighted in pressure-sensitive adhesive (PSA) application due to excellent physical properties and good biocompatibility. Thermal behaviour of polyalkylsiloxane mixtures, such as thermal stability and heat flow, were studied using TG-DTA during catalytic hydrosilation. To understand reaction kinetics of cross-linking, catalytic hydrosilation of polyalkylsiloxane was monitored using variable temperature nuclear magnetic resonance (VT-NMR) as increased temperature. The formation of cross-linking bond $Si-CH_2-CH_2-Si$ was directly observed using distortionless enhanced by polarization transfer (DEPT) technique. Successfully polyalkylsiloxane PSA samples exhibited excellent adhesion properties by cross-linking reaction.

Keywords

References

  1. Sue Mecham, A. Sentman, and M. Sambasivam, J. Appl. Polym. Sci., 116(6), 3265-3270 (2010). https://doi.org/10.1002/app.31752
  2. G. Tolia and S. Kevin Li, Eur. J. Pharm. Biopharm., 82(3), 518-525 (2012). https://doi.org/10.1016/j.ejpb.2012.07.006
  3. I. Webster, Int. J. Adhes. Adhes., 17(1), 69-73 (1997). https://doi.org/10.1016/S0143-7496(96)00024-3
  4. X. Thomas., Silicone Adhesives in Healthcare Applications, Dow Corning Literature, Dow Corning Corporation: Midland, Michigan (2003).
  5. F. De Buyl, Int. J. Adhes. Adhes., 21(5), 411-422 (2001). https://doi.org/10.1016/S0143-7496(01)00018-5
  6. C. A. Dahlquist, Pressure-sensitive adhesives, Marcel Dekker (1969).
  7. I. Khan, and B. T. Poh, J. Polym. Environ., 19(3), 793-811 (2011). https://doi.org/10.1007/s10924-011-0299-z
  8. E. Delebecq, and F. Ganachaud, ACS Appl. Mater. Interfaces, 4(7), 3340-3352 (2012). https://doi.org/10.1021/am300502r
  9. M. Kovermann, K. Saalwachter, and W. Chasse, J. Phys. Chem. B, 116(25), 7566-7574 (2012). https://doi.org/10.1021/jp302745a
  10. S. Vengatesan, D. Vasudevan, and S. Radhakrishnan, Colloid Polym. Sci., 293(12), 3439-3448 (2015). https://doi.org/10.1007/s00396-015-3712-7
  11. S. K. Sahoo, W. Liu, L. A. Samuelson, J. Kumar, and A. L. Cholli, Macromolecules, 35(27), 9990-9998 (2002). https://doi.org/10.1021/ma021142b
  12. D. M. Doddrell, D. T. Pegg, and M. R. Bendall, J. Magn. Reson., 48(2), 323-327 (1982). https://doi.org/10.1016/0022-2364(82)90286-4
  13. H. Uehara, M. Saitoh, R. Morita, E. Akiyama, and T. Yamanobe, Macromolecules, 47(3), 888-896 (2014). https://doi.org/10.1021/ma402291e